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AB$TRACT

Extensive results of numerical calculations for turbulent

recirculatiAg flow with heat transfer are presented. The

gecmetries studied were two-dimensional flows over rearward

(backward) - facing steps and sudden pipe expansions. The

caputations described were performed using the k-e, two equation

model of turbulence. To yield better predictions of heat transfer,

the standard model was improved, by developing algebraic

approximations for Reyrnlds stresses and scalar fluxes, so as to

account for the effects of streamline curvature, pressure-strain

and variat;ion of turbulent Prandtl ntuber in the flo field. In

addition, the lw-Ra ynolds-number version o0 the standard k-£ model

was employed in the redeveloping region. In order to apply the

low-Reynolds-number Todel to the redeveloping region, a two pass

procedure was developed to partition the flow field into separated

and reattached regiorn. This procedure consists of: a first pass

utilizing the standard k-£ model to establish the reattachment

length, and a second coMputational pass, in which all variables are

reconputed. During the second pass, the standard k-£ model is

maintained up to reattachment but the low-Beynolds-number version

is employed beyond reattachment. 7he numerical scheme incorporates

the basic solution algorithm. of the TE&CH-T code. However, this

algoritli was extended to include heat transfer and was iqxoved by

using quadratic differencing for the convective terms.

ii



Results of calculations for mean velocity, mean tenperature

and, turbulent intensity fields, together with heat transfer

coefficients for both the side and base walls are presented. Also

described are the effects of the turbulent approach boundary layer

on heat transfer, the characteristics of the redeveloping turbulent

thermal boundary layer after reattachment and correlations of heat

transfer coefficients.

Ccalarisons are made with other n=nerical calculations and

with available experimental data. Mhe results indicate that

reliable predictions of reattachment lengths can be obtained by the

present improved standard k-e model. Also, fairly accurate overall

heat transfer coefficients are obtained by incorporating both the

iiqproved standard k-L nmxdel and3 the -Rynolds rnI:-F--r form of the

model in a two-pass procedure.
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CHAPTER 1

INTRODUCTION

1.1 General Remarks

In recent years, the energy crisis has motivated heat transfer

engineers to develop high performance heat exchangers and other

advanced thenral devices. In developing the new technology needed

to accomplish this task, a great deal of attention has been given

to the various heat transfer enhancemnt techniques. Some of these

augmentation schemes include: surface promoters, vortex flows, and

additives [1]. With surface promoters, the heat transfer for flows

over rough surfaces can be as much as 15 percent larger than for

flows over ýatooth surfaces [2;3]. In vortex flows, the heat

transfer is significantly increased (by swirling the flow), in sam

cases as much as 80 percent [4,5]. The present research is focused

on effects due to sudden changes of the surface geometry. Such

abrupt changes can enhance the heat transfer ty as much as 50

percent over that of the corresponring attached flow [6].

The heat transfer augmentation which occurs as a result of

alterations of the flow caused by sudden changes in body geaoetry

is a very important aspect of engineering heat transfer. Such flow

alteration, consisting of separation, reattachment and subsequent

redevelcpment may accidentally occur in ske systems, and in

others, may be deliberately induced, primarily to enhance the wall

convective heat transfer rates at the expense of an increase in the
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friction factor. While tl.ere have been significant contributions

in this field, current understanding of the reattachment process is

still relatively poor, essentially because of its ccomplexity.

Thus, a designer is still somewhat at a loss in predicting heat

transfer in separated flows. The gecimetries chosen for the present

calculations are the simple, yet vitally important, two-dimensional

back-step and sudden expansion in a pipe. A considerable anmont of

the needed information for validating turbulence models and

numerical schemes can be obtained by studying these fundamental

engineering gecaitries.

Among two-dimensional flows, the back-step is the simplest

reattaching flow ot practical significance. Twd SeparaLion Point

is fixed at the edge of the step, and there is only one separated

zone, unlike flow over a fence or obstacle. It should be noted

that, although the overall gross features of the turbulent flow are

two-dimensional, the fluctuating components are actually

three-dimensional. Even in this "simplest" reattaching flow, the

flow field for the back-step is still very complex.

The qualitative nature of separated flow fields has been known

for a long time as discussed by Prandtl and Tietjens 17]. Figure

(1) shows a typical abrupt expansion geimretry. The inception of

separaticon occurs at the point of gecmetrical discontinuity. The

'dividing streamline' is the hypothetical streamline that separates
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the reversing fluid from that continuing in the main flow

direction. Reattachment is the point where the separated layer

rejoins a boundary surface (or another layer as in free shear

flows). Thus, at reattachment two flows of opposing directions

exist; and the shear stress vanishes. Figure (1) depicts some of

the qualitative flow characteristics. Imediately after the

boundary layer separates at the step, a new free-shear layer

develops inside the original shear layer. In the separated zone

the flow is highly turbulent and is reversed towards the step in

the near-wall region and re-enters into the new shear layer. This

res ults. in a recircu---ang.--. zone that is separated from the main

strewn flow. Also, in the separated region the shear layer curves

sharply downwards and is influenced by the effects of curvature,

adverse pressure gradient, and wall interaction. Iiwmediately

downstream of reattachment, a new sub-boundary layer is formed;

this layer interacts with the original (inooming) shear layer.

Further downstream, the flow tends to a more reestablished

turbulent boundary layer (or fully-developed flow in a pipe or

channel) [8,9].

In the recirculation region, the early studies. of Abbott and

Kline [10] clearly identify the presence of three dissimilar zones.

Immediately downstream of the step is a three-dimensional zone,

characterized by one or more vortices rotating about an axis normal

• m It I I t II It I I• "I ... $
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to the plane of the flow. Adjacent vortices are counter-rotating,

and they may not all be of the same size. Downstream of the first

zone is a two-dimensional zone that contains the classical

recirculation pattern, i.e., flow near the wall moving upstream and

near the dividing streamline moving downstream. Beyond the second

zone exists a transient tail region (close to the wall and upstream

of reattachment) that eventually disappears with the second zone.

The separation mechanimn is somfewhat different for a body with

a sudden geometric change as opposed to one with a gradual

geometric change. For a body with a slowly varying geometric

change the curvature of the velocity profile at the wall is

directly affected by the r-res~ed pressure gradient. For

instance, for a negative (favorable) pressure gradient, the

velocity profile has a negative curvature all the way to the edge

of the layer, and no separation occurs. For a zero pressure

gradient, the velocity profile has zero curvature at the wall and

negative curvature near the edge of the layer, and no separation

occurs. For a positive (unfavorable or adverse) pressure gradient,

the velocity profile has a positive curvature at the wall and

negative curvature at the out r edge, and separation occurs. For a

sudden expansion geometry due to the interaction there is no

ipressed pressure gradient as such, and the wall (surface) static
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pressure, expressed in terms of pressure coefficients, is

characterized as follows. At separation the pressure coefficient

is negative and decreases gradually to a minimum value just beyond

the step. In the reattachment zone it increases sharply to a

positive value, reaching a maximum just beyond reattachment.

Further downstream of reattachmient it decreases gradually to the

value of the local free stream pressure [9). The static pressure

variation across the expansion (perpendicular to the flow

direction) is nearly constant throughout, except for sharp peaks

across the dividing streamline.

The presence of a recirculating wall layer greatly influences

the prcess of enertw transfer. It has been demonstrated

experimentally, cf [6,81, that within the recirculating region the

heat transfer coefficient is many times larger than that of an

attached flow. This increase in heat transfer, in principle, can

be attributed to the increase in streamwise turbulent kinetic

energy in the mixing layer (region remote frao the wall). Recent

measurements of Moss and Baker [19 and Fraser and Siddig 'Ll±•

illustrate this effect. They showed that the streamwise turbulent

intensity (u' 2 /Uo 2 ) is small within the buffer zone and then

increases quite sharply to a maximum in the mixing layer, before

falling off again to a low value in the main flow. Furthermore,

the peak value of the turbulent kinetic energy increases initially
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with the downstream distance from the sudden change in body

geometry, reaching a maximum just before the reattachment point,

and then decreasing after attachrent. In the redevelopment region

where the flow tends toward a reestablished boundary layer (or

fully developed flow in a pipe or channel), the turbulent kinetic

energy takes on boundary layer type profiles. The high values of

the turbulent kinetic energy in the mixing layer, particularly

around reattachment, is associated with spreading of the layer or

an increase in turbulent diffusion coefficient in the main flow.

This then results in a 'shrinking' of the near-wall viscous

sub-layer, thus allowing greater passage of heat by molecular

diffusion. The increase in heat transfer due to recirculation can

also be viewed as a manifestation of streamline curvature. For

instance, the fluid particle near the wall follows a longer curved

streamline (as opposed to the rectilinear path present in attached

flows), thereby transferring more energy along the curved path.

From the above discussion it is evident that the separating,

reattaching, and redeveloping shear layers are characterized by

active coupling between the external flow and the separated shear

layers. It is for this reason that the flow field is complex. In

attached flows, active coupling between the free stream and

boundary layer need not be considered, and so inviscid and boundary
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layer theories can usually be applied In an uncoupled manner to

yield fairly reasonable predictions. With separation, boundary

layer approximations are not valid, and with the inclusion of heat

transfer, the problem of coupling becomes even more complex.
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1.2 General Form of the Governing Equations

It is accepted that the Navier-Stokes equations, comprising a

closed set of equations for instantaneous velocity and pressure

fields, are valid for both laminar and turbulent flows. For

laminar flows, with well defined initial and boundary conditions,

numerical solutions can be obtained fairly easily. For turbulent

flows, the important components of the turbulence phenomena take

place in small eddies of the order of 1 m. in size wnile the

entire flow field may extend over meters. Reliable nunerical

results can only be expected if the numerical discretization is

Ulr than the smiallest scales of turbulence. Such a procedure

would require a large and inpractical number of nodes; and as sucrh,

demand camputer storage and tine far beyond the capabilities of

present systems. As an example, an eddy size of 1 mm. and a value

of 10 percent of the average velocity for the turbulent

fluctuations, will result in turbulence frequencies of 10- 5 sec -1.

Cebecci and Smith [12] explored the possibility o" obtaining a

carputer solution to reveal the fine scale structures. They showed

thaL boundary layer flow calculations over an airfoil, with about

ten grid points per eddy-size, w'il need about 35,000 years of

computing time with a present-day commputer. By requiring less

physical detail, so as to obtain solutions of practical engineering

problems, restrictions can be made regarding the fine scale



9

structures. The problem can be effectively side-stepped by

considering the tune-averaged equations of turbulence. Time -

averaging 'smears out' thfr fine scale structures, and the resulting

gross properties of turbulence (such as mean velocities and

temperatures) are much more gradual in spcice; as a consequence

excessively fine grids are not required. However, time-averaging

the governing equations results in terms involving statistical

correlations of fluctuations in velocities, temperature, pressure,

etc. There is no direct way of kncoing these correlations, so they

have to be modeled in terms of quantities that can be determined.

Hence, turbulent modeling involves developing a set of equations

for the correlations, which when solved with the mean flow

equations, simulate the behavior of the actual flow. The details

of modeling procedures are discussed in a later chapter.

Rather than using the time-averaging procedure, there are less

restrictive formulations in the literature. A group of

theoreticians, such as Kraichnan, Edwards and Orszag (these studies

are. discussed in the bock of Orszag [13]), have developed

sophisticated statistical theories of turbulence. The mathematical

formulation takes into account the dynamics ot the turbulent motion

through the interaction of eddies of ditfere-. sizes. The

procedure is often referred to as the "direct interaction" method

and is discussed by Orszag 131. The mathematical complexity of
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the procedure is overwhelming; thus the understanding and

applications to basic engineering calculations of turbulent flow

are almost non-existent. Another scheme is the "subgrid-scale"

procedure of Deardorff [141 in which averaging is taken over small

time intervals. In the final procedure all the energy-containing

turbulent motions are treated as though they are unsteady

three-dimensional flows. However, applying this procedure to study

atmospheric turbulence, Deardorff 1151 reported central processor

time on a (MC 7600 of about 350 hours; thereby, implying the

impracticality of the procedure for rudimentary engineering

calculations.

In the present work the generalized steady equations of fluid

motion in the Cartesian tensor notation are employed. Details of

the foregoing analysis are given in Hinze 116].

For an incompressible fluid, the continuity equation takes the

form,

aui
x- = 0 (1.2.1)

where ui is the i'th ccPonent of velocity. For a Newtonian fluid

of uniform density, p , and kinematic viscosity, v , the

instantaneous Navier-Stakes equations in the absence of body. forces

are,

a Ui 1 x + x ( -ui (1.2.2)
_j _ < a

4
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The Navier-Stokes equations for turbulent flow is obtained by

emplcying the Reynolds procedure, namely
ui "ui 4 ui'

P "P + p,

where the primed and overbar superscripts indicate fluctuating and

mean quantities, respectively. Before substituting the Peynolds

procedure into the above equations to obtain the Navier-Stokes

equations for turbulent flow, a brief discussion of time-averaging

with respect to "steady" turbulence is presented.

A turbulent flow is referred to as steady, if for all

dependent variable, (xi,t),
to

S(xj) =! ••f (xit) dt
to 0

as time to beoxmes large compared with the time %cales of

turLuilence motions, . The average value is independent. of the

origin of t of the averaging procedure, provided t < to.

Substituting the above Reynolds relations into Egn. (1.2.2),

making use of Ejqn. (1.2.1), and time - averaging the results yield

the corresponding Navier-Stokes equations for turbulent flow,

P- aui a ' ,U -+-IUu (.1.2.3)

The equation governing the transport of thermal energy

(Temperature, T), is,

-j
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uj.BT ST + r (2T__) (1.2.4)

where ST is the generation of T per unit volumie and r is the

kinematic diffusivity of T.

Using the same Reynolds procedure, i.e.,

T=T+0'

where e' is the fluctuating part of the temperature. Substituting

into Eqn. (1.2.4) and tire averaging, results in,

- - + - - - -a (uje) (1.2.5.)
dx. SXj + (JaxjXj jxj Xj

The turbulent results, Eqns. (1.2.3) and (1.2.5) are identical to

their laminar counterpart, Bqns. (1.2.2) and (1.2.5), except ft~r

the urknowa co~rrelations, tujuj and 9'7hese are ccawr!nýy

referred to as Reynolds stresses and scalar fluxes, respectively.

Solving for these ,hun-o.n stresses and fluxes is referred to as

.turbulence closure or turbulent modeling. For general information4ppendix (A) discusses the mathematics and physics involved in scme

of the most common turbulence closure techniques.

"Presently, it is possible to predict velocity profiles in an
-I

Sincmpressible turbulent boundary layer with a ieasonable degree of

success by using a wide variety of eddy viscosgty models [12,171.

In these models the turbulent stresses in the mean moment=u
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equation are written in terms of a turbulent (eddy) viscosity and

mean velocity gradients. This level of success has led many

investigators to consider a similar approach for the prediction of

heat transfer in thermal boundary layers by employing the Reynolds

analogy L18,191. The hypothesis is that the same complex processes

govern the transport of both momentum and thermal energy in a

turbulent boundary layer. It follows then that the turbulent heat

flux (e.g. v'e') in the above thermal energy equation can be

written as an eddy conductivity times mean temperature gradients

with the turbulent Prandtl number defined as the ratio of turbulent

viscosity to turbulent conductivity. The turbulent viscosity can

be approximated by using a single length scale (Prandtl's mixing

length) or by using length and velocity scales (k-c model). Then,

according to the Reynolds analogy, the turbulent Prandtl number is

O(iM.

,he foct-is of the present analysis is on numerical calculation

of the flow and temperature fields, turbulent variables, and side

and bottom wall heat transfer coefficients, for both

rearward-facing steps and pipe expansions, for the entire turbulent

flow regime. The range of Reynolds nuabers emphasized are in the

low to moderate range. The upstream wall is heated and the

momentum and thermal boundary layers are turbuxlent at both

separation and reattachment (often referred to as

I I I I I I I I I I I I I I II I
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turbulent-turbulent interaction). Eiphasis in this study is on

exploring turbulent viscosity models for heat transfer flows with

recirculation and subsequent redevelopment. In the present closure

scheme the turtulent viscosity and thermal diffusivity are

approximated by less restrictive formulations than are usually

employed. Generalized functional relationships for critical

parameters are algebraically derived to better represent the

physics in both the recirculating and redeveloping regions. This

improved modeling procedure is incorporated into an improved

computational algorithn for the entire flow field, yielding an

improved modeling and computational techique that is unique to the

present research. The modeling and ccaputational technique is

validated by camparison of computed results with available

experimental data. Based on the comparisons a favorable assessment

can be made as to the feasability of the present ccnputational

procedure for routine engineering calculations. Also, it is

expected that the calculated heat transfer coefficients presented

may in themselves be useful to the designer.
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1.3 Brief Description of Contents

The discussion of the present research proceeds as follows.

In Chapter II the state of the art of investigation of turbulent

recirculating flow is reviewed, with emphasis on heat transfer.

Relevant experimental work is mentioned and attention is brought to

same of the unost carmon closure techniques for modeling. Appendix

A discusses the mathematical forulations of same of these closure

techniques. In Chapter III the mathematical equations actually

used for the present carputations are presented with the detailed

derivation of the k-£ viscosity model, and a discussion of the

in Appendix (B). Chapter III also includes a discussion of the

less successful modeling procedures attempted in the initial stages

of this study. In Chapter IV the computational procedures

including the trew.nent of the near-wall conditions are discussed.

In Chapter V, the results of calculations for both the back-step

and pipe expansion gecmetries are presented. COzparison is made

with available experimental data and another numerical calculation

(for the pipe expansion). Heat transfer coefficient correlations

are also presented. Finally, in Chapter VI conclusions are

discussed concerning the calculation procedures and their general

applicability, and finally, suggestions for further studies are

presented.

4



CRAPTER II

REVIEW OF LITERATURE

2.1 Review of Recirculatinq Flow Measurements

Reliable experimental data are essential for the development

and testing of turbulence models. This is simply, because the

models are not wholly analytic; for instance, they contain somea

unknown empirical coefficients (constants) which can only be

eE timated by comparison to experimental data. Hence, availability

of accurate measurements means that the turbulence models can be

adjusted to yield reliable predictions. In this survey of

recirculating flow measurements it is convenient to divide the

review ijto two categories: hydrodynamic and scalar (temperature)

flow field measurements.

2.1.1 Hydro! c Flow Field Measurements

Measurements of hydrodynamic flow tields for

recirculatin9 shear flows are mxch more extensive than those of

scalar flow fields. Until recently neasurc--net of turbulent flow

quantities (even the tine-averaged quantities) for simple

recirculating flows, such as the back-step was very difficult [20],

The flow is highly turbulent and the flow reversals make hot - wire

anemometers generally unsuitable. Since the implementation of

laser-Doppler and pulsed-wire anemometries, the quality of

available data has begun to inprove. 7he following literature



17

survey reLpresents the major reported research on reattaching flows,

with eaphasis on the back-step geametry. A similar survey was

recently compiled by Eaton and Johnston L20].

The measuremnts of Hsu (1950) [21] are apparently the first

expeL' hients to study both mean flow and turbulent profiles for low

speed flows over a large step. However, his turbulence data,

obtained from hot-wire anemceters, differs significantly from many

of the more recent experiments. Another early study is that of

Abbott and Kline [10] in 1961. They studied both single and double

backward-facing steps of various heights. By using water as the

working fluid and eploying flow vibuahlization t6-chn .... th,,

obtained detailed measurenents of mean velocity profiles and

reattachmeit lengths. This work includes only a few turbulent

quantity measurements by hot-film anemnmetry. Also in '961 Tani

[22] used hot-wires to measure mean velocity, turbulence intensity

and turbulent shear stress for various step heights for both

laminar and turbulent incident boundary layers. These measurem.nts

apparently represent the first reliable turbulence data for the

back-step.

In sane of the more recent literature, Bradshaw and Wong (23]

obtained turbulence measurements in the entire flow region

downstream of the step. These data were then used to obtain same
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indirect information about the turbulence structure by "numerical

experiments", i.e., by forcing enpirical calculations to match the

experiments. This then enabled them to study in more detail the

shear-layer mass flow recirculating zone. They also studied the

redeveloping boundary layer and noticed that for at least 52 step

heights downstream the attached boundary layer characteristics

("law of the wall" behavior) were not fully recovered.

In 1975 Bradshaw (24] reviewed and identified some ccmplex

turbulent flows. One of the complex flows identified was separated

flow. To contribute to the understanding of the separation and

redevelopment phencmena, recently Chandrsuda and Bradshaw 125]

continued the experiments of Bradshaw and Wong 123]. Their

back-step experiments utilized a thin laminar approach boundary

layer, mainly bacause in the reattached region full develcpment is

reached much faster for a laminar approach boundary layer than for

a turbulent one [26]. Measurements reported include mean velocity

and e-yno.-ds stresses (including higher order correlations). They

concluded because of the importance of the triple products, any

successful modeling procedure should reflect these effects together

with the 'wall-effects' in the pressure - strain term. The

moodeling procedure in the present research, to be discussed later,

does include some of these effects.



19

Narayanan et al. [27] have measured the wall static pressure

behind steps (of varying heights) in a wind tunnel. Their results

indicate reasonably well defined similarity patterns in the

pressure distributions of the separated flow regions, from these

distributions they were able to estimate reattachment lengths.

Kim et al. (28] measured mean velocity, Reynolds stresses and

intermittency (fraction of time for which the flow at a given point

is turbulent) in the entire flow field of the back-step. They

noticed that downstream of rattachment the flow very slowly returns

to the structure of the attached boundary layer.

Fbr the double facing back-step gecmetry, Mehta [29] presented

hot-wire aneometer results of mean pressure and velocity fields,

turbulence intensities and Reynolds shear stresses.

Recently, moss and Baker 19] presented very detailed

measurements by using the plused-wire anemomter for flows over a

rearward-facing step, over a front-facing step and over a

~ ~ '-.:~ preer~re ~ur f-1d. velocity

profiles and turbulence intensities.

Laser anemuraretry has also been employed in the study of

recirculating flcws. Denham and Patrick [30] verified the use of

this technique by presenting detailed velocity profiles for laminar

flows beyond a back-step in a plane duct. Etheridge and Kenm [31]

used a frequency-shifted laser to study the flow behind the
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back-step in a water channel. Tey presented mean velocities,

turbulent intensities and Reynolds stresses. By also using the

laser, Smyth L32] studied flows over a double backward-facing step.

Streamwise, transverse and cross-stream cauponents of velocity

fluctuations, turbulent kinetic energy and Reynolds shear stresses

were presented. Armaly et al. [33] also presented laser-Doppler

measurements of velocity distributions and reattachment lengths for

the back-step. Results were for laminar, transitional and

turbulent flow of air. For a related geometry, Fraser and Siddig

(11] also applied laser anemmietry to study recirculation due to

air flow over a normal plane wall in a duct. They presented mean

and fluctuating velocities.

For the pipe expansion Back and Roschke 134] measured velocity

profiles for laminar, transitional and turbulent approach boundary

layers, the fluid being water.

All of the above studies reported reattachment lengths varying

fran about 5.5 to 8.0 st heights downstream ot separation.

Reattachment length is a very significant quantity in recirculating

flows and it is worthV-ile to give some attention to the factors

that affect it. For example, changes in pressure gradient can

cause large changes in the reattachment length. Recently, Kuehn

[35] studied this effect. He measuLed the influene of adverse

pressure gradient on z-eattacrnt length. The resvc &s are shwn) in
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Figure (2), which indicates an increase in streanwise pressure

gradient causes an increase in reattachbmnt length. Narayanan et

al. L27] examined the effects of approach rwoentum boundary layer

thickness on reattactment length. Figure (3) summarizes their

experimental results. As can be seen the effects are slight,

particularly in the range 6 u/H < 1.5 (6 u is the approach boundary

layer thickness and H the step height). Finally, the effects of

approach free - stream turbulence have been examined by Etheridge

and Kemp [31]. They noticed that increasing the level of free

stream turbulence results in a decrease in reattachment.

2.1.2 Scalar Flow Field measurements

Mean scalar field measurements are extremely important in

understanding the fluid mechanics ard are directly applicable Co

practical situations. Yet, as mentioned earlier, turbulence

measurements of scalar fields are very rare in the literature.

Often only the mean scalar field is reported; usually no study is

nide of the heat transfer coefficients, scalar fluxes or scalar

fluctuations. Conversely, quite a few heat transfer measurements

are concerned only with scalar measurments; no hydrodynamic field

measurements are included.

convective recirculating heat transfer flows have been

reviewed earlier by Batsen x'd Pi--•dxcLarn [36), Fletcher et al.

137] and by Aung and Watkins [38]. Aung arv Goldstein [8) reported

*1e
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what is apparently the only existing low speed turbulent heat

transfer data for the back-step. The measurements were obtained by

using a Mach-Zehnder interferometer. Temperature profiles and heat

transfer coefficients are presented for the entire flow. field.

Much earlier than kAng and Go2ldstein's [8] study, Seban et al. 16]

studied the heat transfer over the back step for high speed flows,

with the upstream plate unheated. For the pipe expansion Zwanick

and Dougall L39] teported what are also the most complete heat

transfer nmasurements for the entire flow field. Also in related

work, nuch earlier than this study, were the mweasurements of Ede et

al. [40]. Tn their study they did not enq)hasize heat transfer in

the redevelping region. Pýecently, Spa:rrow and O'Brien [41]

presentet heat transfer data for the heated side wall in a pipe

expansion geometry. The heat transfer coefficients were determined

by a napthalene sublimation technique. It should be reewphasised

that it is unfortunate than none of the above studies measured the

hydrodynamic flow field in conjunction with the heat transfer.

Some heat transfer measurements for related geometries are: a

double step by Seki et al. [42,43], a blockage in a pipe by Kormm

and Sparrow [44], flow over a disc by Smyth [45), high speed flow

over a cavity by Haugen and rhanak [46] and flow over blunt plate

by Ota and Ron [47,48].

All of the recirculatin" flow heat transfer measurements

-t
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confirm a peak in the surface heat transfer coefficient near the

reattadcment point, the peak value being many times larger than the

fully developed (or attached) value. Correlations of experimental

heat transfer data are very rare in the literature, probably

because of the wide range of discrepancies between the

measurements. However, for the back-step and for supersonic Ulows,

a correlation procedure was attempted by Lamb [49].

i 4

1
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2.2 Turbulent Modeling For Recirculating Flows

A great deal of modeling success has been achieved for

turbulent boundary layer flow, with and without heat transfer. For

these flows empirical relations such as the 'law of the wall' were

adequate. Such approaches fail for turbulent separated flows.

This then led to the development of other theoretical models, both

stiple and complex. The advantages of the simple models are that

they enable the development of very versatile and useful numerical

codes. Employing these codes furnished and euphasized the need for

more realistic and advanced turbulent models.

As seen in Chapter I, in order to solve te it-ian =entu ,

mean scalar equations, Eqns. (1.2.3) and (1.2.5), one needs

information on thIe correlations, uiuj and uie!. Before reviewing

the modeling procedures employed by researchers for these terms in

heat transfer recirculating flows, a generalized discussion of some

of the proposals for turbulent closures is presented.

2.2.1 Some Closure TeLmicnLeS

There are a few extensive reviews in the literature that

examine the various closure techniques. For example, four such

reviews are: Bradshaw [501, Rodi 151], Reynolds [521 and Mellor and

Herring [53]. Modeling is better accomplished with an insight into

the physics of turbulence. Such an insight is given by Bradshaw

[501. In this section modeling of both hydrodynamic and scalar

K..
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flcrw fields is discussed. Appendix A contains the mathematical

expressions of the models discussed below.

(a) Eddy Viscosity Models

This closure procedure is based on Boussinesq's

(1877) (54] idea of a "turLulent visocity". He suggested that the

local turbulent shear stress be related to the eddy viscosity and

the local mean velocity gradient, i.e., analagous to laminar

stresses. The turbulent (eddy) viscosity is assumd a property of

the flow field and not a fluid property. For scalar fluxes use is

made of the ratio of eddy viscosity to eddy diffusivity, denoted by

the turbulent Prandtl number. Closure is accomplished by

specifying the eddy viscosity.

Two ccmwrn procedures are in use, one expresses the

eddy viscosity algebraically in terms of mean quantities and the

other by differential equations. The sinplest algebraic expression

is the mixing length hypothesis of Prandtl [551. An iqprovement of

this length scale was suggested by Van Driest [561.

The first level of improvement of the algebraic

viscosity model is the so called one-equation model. In this

model, in approximating the turbulent viscosity, a differential

equation for a velocity scale (in terms of the turbulent kinetic

energy, k) is introduced together with the mixing length scale.

For boundary layer flows this procedure was tested by Bradshaw et
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al. 157]. The turbulent kinetic energy is an important parameter,

for it distinguishes turbulent fran laminar flow and is well

documented by experiments.

A major problem in turbulent modeling techniques is

the choice of necessary and adequate equations. Most work features

the diffusion of kinetic energy, e, as a key quantity. An improved

modeling procedure involves approximating the viscosity in terms of

differential equations for the velocity and length scales (done in

terms of k and e ). This procedure is ccmmonly referred to as the

two - equation model of turbulence or simply the k-E model. The

standard k-c model (high Reynolds numiber) requires 6peQiicatjon 1of

'wall-functions' [58). Same imprmverients of the standard

'wall-functions' are given by Chieng and Launder [59]. Jones and

Launder 160] extended the standard k-e model to include near-wall

effects; no specification of the 'wall-functions' outside the

viscous sublayer is needed. Because of the simp.licity and success

of the k-c model many recent studies were focused on improving the

deficiencies of the model. 7he formulation of the E differential

equation has been the topic of much controversy. Re-examining the

equation, Hanjalic and Launder [61,62] 'sensitized' the diffusion

of energy effects by considering the importance of near-wall

turbulence and the influence of normal strains. Another drawback

of the model is that it uses an empirical constant in the

I
I
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formulation of the turbulent viscosity. Recently, Ljuboja and Rodi

[63], Leschziner and Rodi [64], Humphrey and Pourahmadi 165] and

Gooray, Watkins and Aung 1661 replaced these constants by a

function derived from an algebraic stress model, The ixprovement

plrocedure is outlined in a later chapter. In the present study an

analagous calculation was petformed for the turbulent Prandtl

number and is discussed in a later section. An earlier study by So

[671, attmpted a similar procedure, but by using the curvature

modifications of Bradshaw [68].

(b) Stress and Flux Transort models

Rather than assume a direct relation between the

shear stress and mean strain field (Boussiresq's idea), transport

equations for the Peynolds stresses and scalar fluxes are

developed. The advantages of this procedure are that solutions

start at the wall itself, thus no specification of

'wall-functions', or asstmptions as to the turbulent Prandtl numzber

are reT mired, and it automatically includes such effects as

streamline curvatures and pressure-strain (scalar) interactions.

However, it does require solving some 5 to 7 transport equations of

turbulence.

This modeling procedure is much more reliable for

predicting non-equilibruim flow (which include recirculating and

mixing flows), i.e., when using the turbulent viscosity procedure,

r1
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the forcing of the shear stress to instantaneously respond to

changres in the mean strain field is not conceptually valid in such

fl lcz.

Thus, the closure of the approximate differential

equations for the Reynolds stresses (uPi) and scalar fluxes (up')

offets a very promising class of turbulence models for the solution

of caTlicated turbulent flows. The development of the closure

procedures, including procedures for scalar fluxes, can be found in

mnany references, e.g. Launder, Peece and Rodi [17], Launder [69],

Hanjalic and Launder [711 (extension of the model to include

near-wall e c;s). Closure of the ctres and 'll.•s requires

approximatioas for the pressure - strain/scalar and triple

correlation terms. The various approximations suggested for these

teuns differ significantly; for this reason Much present researcnh

is still directed in this area. Fbr example, Conmack et al. [72]

developed an inprovement of the Hanjalic and Launder [711 triple

velocity correlation clostre. However, because of the nodel's

complexity Oormack et al. [72] remc-utnmded the one-parameter model

of Hanjalic and Launder (71] for nnft basic flow situations. This

conclusion was arrived at after r.aking caiparisons with ',wrious

other models and experiments for axisynmetric channel flow, pipe

flow, wall-jets and mixing layers. FR-antlyl, botb So [73] and

Spexziale [74] indepe:nently further studied the pressure-strain
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modeling of Hanjalic and Launder [71]. In his work, So [73)

included terms which account for rapid distortion of the shear

stress and the return to isotropy process. However, the

in=provements were found to be minor when campered to the lotta

return to isotropy =ndel used by fanjalic and Launder [71]. This

indicated that much improvement of the pressure-strain term is not

possible by just refining the simple kotta model, a procedure

suggested by Launder [69]. With this in mind Speziale [74]

redefined the pressure strain term. Proving this term to be

invariant, he develcred a representation for it that is dependent

on the Reynolds stresses, mean velocity gradients and a master

length scale. However, this improvement still has to'be tested to

determine its usefulness and range of validity. The above modeling

procedures do not correctly predict the cQ1lex turbulent scales

that are present in corner flows. Recently, Cessner and Emery arid

Gessner (75,76] improved the Laund-er, Recce and kodi's nodel [71)

to better simulate corner flows.

Mzdeling of the scalar fuxes have been carried out

by Launder [69). Gibson and Launder [77] extended the models to

include buoancy effects for thin shear flows ren te -from walls.

Fecently, Smouraweera 178] performed extensive testing of the

varicus scalar flux models for boundary-layer type fl!ws.

Analogous to the presnue-strain movdeling is the

- 1
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pressure- scalar modeling. This procedure is outlined in Gibson

[79]. 7he empirical constants appearing in the pressure-scalar

model can be obtained fran the data of Antomia and Danh 180].

In an effort to reduce the number of transport

equations to be solved, simpler versions of the Reynolds stresses

and scalar fluxes closure schemes have been derived. One such

simplification is the so called algebraic stress closure. The

mathematics of the procedure is given in the next chapter, and is

similar to that formulated by Launder [69]. Gessner and Emery [77]

and Gessner and Po (81] applied this model to flow in a rectanular

d w* ctI = frii imi •-hat- thn .i•ia1 v, e •y I-s whan .nnlt tj-nr

empirical constants and a generalized mixing length are specified.

Also, So (82] showed that this nmodel can be used to predict the

behavior of different kinds of shear flows, i.e., flows over curved

surfaces. Algebraic modeling of the scalar flux equation has been

done by Gibson [79] and Gibson and Launder [77].

As previously mentioned, algebraic modeling has been

used to estimate the constant in the eddy viscosity model, thereby

simultaneously accounting for streamline curvature and pressure -

strain effects. Bradshaw [68] reported an early study on the

importance of these effects. Irwin and Suith [83] used the

algebraic stress model to also demonstrate these effects. However,

because of the difficulties •ivolved in specifying length scales
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and an empirical corstant in Bradshaw's [681 model, the algebraic

stress modeling seems more adaptable to improving the k-e model.

2.2.2 Application to Recirculatinq Flows

1he mixing lrngLh models can be used for satisfactory

prediction of two-dimensional boundary layer flows. Since these

flows are self preserving and have local equilibruim regions, the

single length scale, with correctly chosen empirical constants can

yield satisfactory results. However, applications to recirculating

flows have only met moderate success at best [91].

Use of the two-equation (k-E.) mnodel is an obvious

inproveittnt, since it incorporates the transport effects of the

length scale into the turbulence model. A review of the

applicability and validity of this model is demonstrated by Launder

and Spalding [581 for many flow situations. Included is flow

recirculation, i.e., a film cooling application amd flow in a

cavity.

After the inception of the present study, a few

researchers have attemted modeling recirculating flows for the

back-step and pipe expansion. In all cases known to the author,

the k-e model was used. For momentum transfer studies, Taylor et

al. [84] incorporated this model with a finite elemnt solution

procedure to yield velocity profiles, turbulent intensity and

reattachment lengths. Oliver [85] studied heat transfer over the

I I I I I I I I I I I I I I I I I
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back-step and compared his results with the experiments of Seban

[6] for high speed flows. His predictions overestimate the heat

transfer data in the entire flow field, particularly in the

reattachnment region. Chieng and Launder [591 studied the pipe

expansion geometry, by using both the standard k-c model and the

low Reynolds number version of the model. They compared heat

transfer coefficients with the data of Zemamick and Dougall [39].

A more detailed discussion of the Chieng and Launder |59]

calculations is presented later.

An early analytic analysis of heat transfer for turbulent

separated tlo-s was performed by Spalding 196]. He ideed a

one dimensional analysis near the wall and postulated relationships

for the generation, diffusion and dissipation of turbulent energy

in tetms of the turbulent kinetic energy and empirical constants.

Solving the differential equation for k, the Stanton number

dependence was obtained. However, as Spalding [86] suggested a

two-dimensional analysis with a more realistic turbulent model is

needed so as to quantitatively determine velocity and temperature

profiles and turbulent intensities.

Modeling procedures for recirculating free shear flows

(such as jets) have also been studied. Such flows have been

reviewed by Durst and Rastogi [87) and by Leschziner and Rodi [64].
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2.3 Review of CMputational Methods for Recirculati•n Flows

Computation of recirculating flows has been a major problem

for decades now. For laminar flows the hydrodynamic flow field for

the back-step was reliably predicted by the vorticity/stream

function fornulation of roache and Mueller L88]. Turbulent flow

field simulations of recirculating flow by solving the ccoplete

Navier-Stokes equations have increased with the advent of high

speed ccmputers. As discussed in the previous section great

difficulties exist in the formulation of a set of differential

equations to model the flow; and as expected, numerical

computations of these equationLS are also vcry tediUsa For Vhis

reason many investigators have concentrated their efforts at

looking at the numerical schemes. A review of some of this

research is discussed below.

Recently, Atkins et al. 1893 examined various numerical

schemes for separated flows and ccmpared the different results

obtained for the back-step geametzy. They concluded that for low

Reynolds number by using pure upwind differencing to approximate

the convective terms yields reattachment lengths about 8 percent

lower than that obtained by a corresponding central differencing

approximation procedure. At high Reynolds number, the upwind

difference prediction agrees well with experimental results, but

the numerical specification of the inlet condition is very
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critical. Also, Kinh and (bassai;tj [90] recentiy studied turbulent

numerical calculations for both boundery layer and -rcirculatinrg

type flows. Emphasis was not placed on tutbuhent. modeling, but on

choice of unknown variables (vwrticity/stream, function, w ,i, or

pressure/velocity, u, i, p) aid the influence of inlet conditions.

They found that the (u v p) primitive variable formulation vas

better than the ( x ) metthod for yielding pressure fields and

turbulent quantities (k, u'v'). Castro [91] al[i noted that the

accuracy of the coummn differencing schumes is ofteni suspect. He

showed that upwind differencing is nrt acoarate near the sharp

edges at which the flow separates, and found that ske'w differencing

schemes seem to be better. However, skew differencing te'mique-S

have not been fully tested and verified for re:irculatimj flows.

Richards ard Crane [92] developed a new central differencing scheme

and found it to be more accurate than the conventional upwind

differencing scheme. 5owever, the scheme will only yield

convergence if there is an upper lil.it o•- a qcnt-Zity" def 44-I the

grid Reynolds number. Unfortunazely, to satisty this condition

requires an excessively fine mesh system and restricts the Peyrolds

number to extremely low values. Birirvjen 193] solved the partial

differential equations by a time explicit finite differencing

scheme, a modified La•k-Wendroff method. He found that values of

the turbulent kinetic energy were very sensitive to the 3npirical
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input; whereas, mean velocities and stresses were not so sensitive.

A recent review by Barrett and Demunshi [94] examined finite

element, finite difference and finite integral methods for

recirculating flows. They concluded that finite difference

procedures seem to more reliably predict the recirculating flow

field.

Initially many calculation procedures utilized the hybrid

central/upwind scheme for the convective term and central

differencing for the diffusive terms. This procedure was developed

by Patankar (951. Very recently, Patankar [961 reviewed the

procedure. Te procedure suffers fr.im inaccuracies due to -

truncation error and false diffusion. In light of this, many

recent studies have focused on improving the hybrid scheme. Two

ntro'ement procedures were studied recently, namely, the hybrid

central/skew-upwind differencing scheme of Raithby [97] and the

quadratic differencing scheme of Leonard [98]. The quadratic

scheme is incorporated in this research and will be discussed in a

later chapter. Practical evaluation of these schemes, very

recently. were reported by Leschziner [991, Lescdtiner and Rodi

(64] arn Ban, Hwphrey and Launder [100]. T1he numerical procedure

eaployed in this study efploys the improvement of Leoiard [98] on

the Patanfar proxedure [95), as developed by Gosman [101].

LL . |e |e |
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2.4 SUMMAVY

Presently, the information on the complex turbulent flcws of

the backward step and the sudden pipe expansion is sufficient

ernough for qualitative discussion of these flows. Fbwever,

engineering applications require quantitative predictions of some

of these ccurlex flows. In the foregoing sections such prediction

possibilities were explored by locking at the existing experimental

measurenents and modeling procedures for turbtilent recirculating

heat transfer, with emphasis on the back-step and pipe expansion

geometries. The existing numerical procedures were also examined

with the conclusion being that they are well tested and quite

adequate for use in studying recirculating flows. So with

confidence in the numerical procedure, the validity and

applicability of the turbulence models can be tested to same

deqree. However, for such modeling to be more meaningful there is

a need for more extensive heat transfer measurements for these

basic engineeri"g gec-letries.

As a final remark, the turbulent modeling procedures do not

take into account the intermittent nature of turbulence that simple

experiments can detail. This is due to the fact that in seeking a

model for tractable computer solution, resorting to the averaging

of the equations of motion smears out thi-s time dependency. Such

effects, however, are probably more dainating in free shear flows

than in wall bounded flows and moreover, the time scales involved

i
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are probably riot significant when considering application to heat

exchange equipuent..

N!
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CHAPIER III

MATHEMATICAL AMD PHYSICAL M)DEL FOR GEOMETRIES CONSIDERED

.il General Remarks

As discussed previously in Chapter I, solution of the

Navier-Stokes and energy equations for turbulent flows, Eqns.

(1.2.3) and (1.2.5), requires closure of the Reynolds stresses and

scalar fluxes. In Chapter II the various closure schees were

described. In the present study, variations of one such closure

scheme, turbulent viscosity modeling (modeling based on the

Boussinesq (54] approximation), were applied to two recirculating

flow gecoetries where consistent experimental data exists: air flow

at moderate Reynolds nimbers over --dime _sio.•! rearmard-facing

steps and sudden pipe expansions. Successful prediccions of the

turbulent flow over the two-dimensional rearward-facing steps and

axisymetric pipe expansions were eventually obtained by solving

numerically the governing partial differential equations as

formulated for the k- turbulent viscosity model by Launder and

co-workers, cf [19,58,611. Although the present study focuses on

the so called turbulent visoosity models, details of other

turbulence closure schemes as well as details of the turbulent

viscosity models are presented in Appendix (A) for convenient

reference purposes.



I

39

3.2 The Boussinesq Approximation

As mentioned before, the closure procedure used in the present

study incorporates the Boussinesq [541 turbulent viscosity

hypothesis, whidi relates the Reynolds stresses to rean rates of

strains by a turbulent viscosity concept. According to this

formulation, the various ccaronents of the Reynolds stresses are,

-7 ;" +ax (3.2.1)

-Pu -- x t3Pk (3.2.2)

-PV Ut -2 L 3Pk (3.2.3)

As before, lit is the turbulent viscosity. Assuming similar

relationships for the heat fluxes,

-p U e - r -- (3.2.4)

-P V 0 - It (3.2.5)

where I't (- PL/Prt) is the turbulent diffusivity of temperature.

The turbulent viscosity has to be modeled and rt is approximated by

using the turbulent Prandtl inbwer, Prt, i.e., the ratio of

turbulent viscosity to turbulent diffusivity (ptrt).

_____
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Prt V t/Tt

3.3 Fluid and Thermal Transport Ejuations

By employing the Boussinesq [54) approximations of the

previous section, the time independent mea% mimentum and energy

equations, Djns. (1.2.1), (1.2.3) and (1.2.4), for an

-inc-9ýessible fluid (for each ccamonent) becane:

au 1 (YJV)-o

ax , a y 
(3.3.1)

Pu Lu + Pv 2u- 2 +

+ 2 -( 2 - 4~ - P + S

Oy \ / j m i t (3 .3 .2 )

S 11 + - Y- - Uff 'v

Su fx ( Y, ayy

P u • + p v - - 2 + ~ - • )y( 3

P x L Y 4 - p v L Vx - - Y • e f f ax ( 3 . 3 . 3 )
ax By ay 5- ax a

Y eff ay f 3 y

-2 eff a ..) + Pefff -a Vav x a y yJ ay ay2

SAL + PVL-(ff 21 +y- (3.3.4)

where, j = 0 applies to the back step and
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j = 1 applies to the pipe expansion

in the above

peff = p + lt, where lit is the turbulent viscosity

ref f = 31 + Pt , where Prt is the turbulent Prandtl

Pr Prt number

In the foregoing equations, for notational simplicity the usual

overtars have been craitted for the mean fluid-dynamic and

temperature variables. As shown in Figure (4), y is measured frcm

the free stream of the back-step or the pipe centerline, and x is

the distance along the plate or pipe axis from the vertical face.

Solution of the above equations requires solvinc a set of

coupled non-linear elliptic partial differential equations, with a

provision for determination of the pressure field. initial

conditions are discussed in a later section and boundary

conditions, together with the solution algorithn are discussed in

the next chapter.

Specification of lit and Prt, so as to solve. the system of

equations, constitutes a major part of this research. In the

initial phase of this study, the simplest turbulent viscosity model.

(the mixing length model) together with a constant value ft-x the

turbulent Prandtl number was used. As will be discussed later,

because of the pre-senc of complexities in tbil turbule•icu

associated with recirculating heat transfer flows, the -irxing

length model was replaced with a samwhat mre 0q.histicted



42

turbulent visco,•ity the k-e model which gave better results. As

the study progressed, it became evident that in order to further

iqprove overall predictions, moditications of the k-smodel were

necessary. Numerical experiments were then performed to determine

the most relieble form of the k-e model that could be applied for

engineering predictions of recirculating heat transfer. The final

calculations in this study use the modified standard k- model,

together with a variation of this model apprc~riate for wall shear

flows. Functional relationships were derived for two coefficients

appearing in the model, a coefficient that relates the viscosity to

the turbUlent length and velocity scales, and the turbulent Prandtl

number.

The remainder of this chapter is devoted primarily to the

formulations of the various viscosity models tested in this study.

I I I I I I Iii "i I I I I I)
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3.4 Turbulent Prandtl Number and Viscosity Models

3.4.1 Turbulent PrandtJ. Number

In most previous numerical calculations Prt has been

assumed to be a constant value, e.g., for air a value of 0.9. This

value has been substantiated by experiments for regions outside the

viscous sublayer [102]. However, in the viscous sublayer as show:-

by Blackwell [102] the value is significantly different. Crawford

and Kays [103] developed an enpirical expression which si1ulates

the data very well,

Pr, 1Pe (Pr ) -12
"2Pr t too

-1

(C Pet)' ~ exp ( - 11/ )
c Pet (Pr t) (3.4.1)

where Prt, is the free stream value of 0.9, c = 0.2 and

Pet" (Ut/U) Pr , Pr (molecular) 0.7 (for air)

In the above, the turbulent viscosity, lt, was applmximated by

using the mixing length rmdel.

By using a Taylor series expansion procedure, Antonia

1)41 develqOp a sinpler analytic approximation for the behavior

Of Prt in the Buffer zone (5 < y+ < 20).

! ~~~Prt = 0.61 (I-0.045y+) 34)

(1.-0o05r

where y4 is the non-dimensional nonl co-ordinate,

y y u./,v u.= (\/p)h,-tý is the wall skear stress.
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In the present st dy prelihinary calculations used Eqn.

(3.4.2) in the viscous sublayer and a value of 0.9 elsewhere. Such

a procedure is scmewhat inconsistent for the recirculating region,

since Eqn. (3.4.2) was derived for a developed boundary layer. In

subsequent calculations, the above approach was abandoned for a

more generalized description of Prt based on algebraic stress

modeling. Since the concept and derivation of this new expression

is sinilar to that of the improved turbulent viscosity model.,

discussion of it is deferred to Section (3.4.4) where both are

discasse-d concu-•'-rently.

3.4.2 Mixing Length Model

The mixing length hypothesis is the si lest closure

procedure. In this model the viscosity is approximated by a single

length scale. During the initial phase of the present study

numerical experiments were performed with a modified Van Driest

[105] length scale, where,

t" W 0 2 B ~u (3.4.3)

in which

10-~ K [l1-ex1 -(+ T+)34.4

whete A+ is normally taken to be a constant value of 26, to conform

with the fully turbulent profile remote from a wall. Initial

calculations were performed incorporating the above length scale,

but with A+ given a functional behavior, as discussed by Crawford

i
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and Kays (103.] Unfortunately, the beat transfer predictions by

this simple model grossly underestimated the data, particularly in

the recirculating region. Such a result however, is anticipated,

for, in the recirculating (and redevelcping) region it should not

be expected that a single length scale will accurately predict the

cmp-l~x turbulence pherxiena that exist. After the unsuccessful

initial numerical experiments, the mixing length approach was

abandoned in favor of the k-E model.

3.4.3 k-E Model

The k- e viscosity approximation procedure is one of the

most successful and widely used closure techniques. The standard

approximation for the viscosity by two scales is,

1/2 k3/2
li -V p k -E- (3.4.5)

where C is norally assumed a constant, kk (k is the turbulent

kinetic energy, i.e., k - u'u./2) is the vel scale and k 3/ 2/E
i11

is the length scale, e being the dissipation rate of turbulence

energy. Transport differential equations for k and C are required

and will be presented shortly with non-essential details given in

Appendix A. Hcmever, first scme remarks on C are appropriate.
u

Early calculations in the present research [106] used the

established constant value of 0.09 for C( [58], but subsequent

I
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studies indicated the need to irrprove this nmdel through giving C

a functional value. The rationale for this improvwnent is that in

recirculating flows the effects of streamline curvatures and

pressure-strain interactions are significant factors that influence

the recirculating process (63,64,651. Neglecting these effects

results in a shorter recirculating zone. In the k-e model the most

consistent manner in which both these effects can be included is

through C P As in the case of Prt a generalized expression based

on algebraic stress modeling can be derived and further discussion

is deterred to Section (3.4.4).

In this study two forms of the k-c nodel are used, the

standard or' "high-Reynolds-nsamber" version [58] and the

low-Reynolds-number form proposed by Jones and Launder 11061. In

the generalized equations presented below, terms appearing within

the brocen lines are omitted when using the standard version (Eqn.

3.4.5) of the model. The effective viscosity and diffusivity tetms

appear-g in Eqns. (3.3.2) - (3.3.4) are given by (approximations

for Prt were discussed previously),

leff m .ýI+% ; P it "C I P k2 /C
t

reff T + Pr t (3.4.6)
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The transport of turbulent kinetic energy, k, is expressed by

(Appendix A)

p (uk) + p (vk) -- ' ) + k

S2 i a. I

-ýY _pE 2p(ly (3.4.7)

Min thlL1 Othera - dissipatpion eqiaions,

simlarly be expressed by,

p 2-(uC) +p( ) -P- L (E y~ J( +I

;)a JJ axj

P t LCl G C£ P +'"
ax ayI I F

/ 2?

+ 12 ~'t u _ I

P \ay 2  1 (3.4.8)

In the preceding equations,

2 2 2 2

Cjj, Cr1 %e2' C~k and ap are constýtsof the standard model and are

presented in Table (3.1). The low-turbulent Reynolds number

functions are taken as,
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TABLE 3. 1

V~A~UT OF EMIRICAL CnF-ICrMr IN STAN~DA k-F-

AND PESSUIM-STIPAL (SCALAR) !4ODEIS

Co~tficient EZquAtion of vrtrt Vari.able Valq* Pefeellc.($) frcm
.Icrarnco M4,de1d wdhich Oitatined

Lu3..~ Viscosity (3.4.36)

Kinetic

FE .46rte of 1.44 MIT-)

C, :1:1:0ru 1.92 15(81

A.3.4.8 No). E~fcwts 0.2 Ibo.±QTI

C31W Zffrect% -a T5- 17

7 -All1 .51if'

.1w5

effects
in1 pre"~
guu straI.n
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S-A pv 2
-exp oIR~ o , R-

f 1.0 - 0.222 exp R~ 2 /36]

where values for Am and Ar are also presented in Table (3.1).

The standard k-E model as originally described by Launder and

Spalding [19] does not have the capability of including details of

flow processes involving the molecular viscous effects near a wall.

Away from a wall (in the logarithnic region), where the influences

of molecular viscosity are insignificant (P < pt), the standard

eqort4.,ons for k and c are valid. Thus to account for the viscous

diffusion of k and c close to the wall, Launder and Jones [60]

added the molecular viscosity dependent terms to the standard

equations. The viscosity dependent functions are related to the

turbulent Reynolds number Rt(pk2/cw), which has a dcminating

empirical reJatiknships obtained from boundary layer type fljws; as

such, they are not based on exact mathematical formulations.

Apart frcm the low-r-eynolds number form of the model other

iq 'rovemnts of the standard =odel were also incoL-Torated in this

study. Need for improvements to the standard model have been

recognized for saw tJnwi now by several reseezrhers [62,64,691. As

pointed out tby Launder 169], the teLm that is rct loosely

I
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approxiated in the k-s model is e. Primarily because none of the

teras in the transport equation for e can be measured

experimentally, ewpirical approximations are difficult. To iqprove

the modeiing of the e transport equation for accelerated shear

flcyws. Hanjalic and Launder [62] "sensitized" tne equation to the

diffusion of eniergy effects by considering the inportance of

near-dll turbulence and the influernce of normal strains. The term

added to the s-differential equation is,

-C (0.33a)Z/ax (3.4,9)

Direct application of the term represented by Eqn. (3.4.9) into the

k-£ model, resulted in minimai. inprovemnent of the heat transfer

results for the redeveloping region in the present study.

Leschziner and Pbdi [64J used the fornmlatiais of Hanjalic and

Launder [62] in steamtline cqc-.rdinates to "sensitlze" the e

equation to a recircuiatins§ fLo by includL-g tLhe C-f--ctS of

streamline curvature. ThJs procedure was also tested in this

study. In streamline co-ordinates, the extra term appearing in the

e transport equation is,

2
- L " k2 S (3.4.10)

in which,

Cl" - 0.8
aus SUs

and Ss= - _

an R
C
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In the above u. is the velocity normal to the streamline, n is the

co-ordinate normal to the streamline and Rc is the radius of

curvature (Fig. (B1.)). Expressions for aus/Jn and 1ý-, developed

in ?Pendix (B) are,

•U s -in(28 . . .. + cos(26) 2u + ,2e- + U (3.4.11)
an'• ay ax ay ax Ile

and, 2 23/2
(2 = 2 - (3.4,12)

Iav aq + _.2 av. 2 'du,

In Eqn. (3.4.11) e is the angle between the velocity vector that is

tangent to the streamline and the x-axis 4fitqre (B])).

In the present research, indluding the term represented

bt EBqn. (304.10) resulted in sax impt.A.me.ir in the resuJ.ts over

the standard model for the recirculating ,ne. F -ever, it was

eventually discarded in favor of the more cn reip.unsive zTproach of

including curvature effects by modifying %, as disoissed in

Section (3.4.4). Results of reattachment lengths a•Ad heat tVansfer

calculated using EDn. (3.4.10) in the standa.d k-C nMxlel are

Sprs-ented in a later chapter and are ccupared wita results trcm

other modifications.

Solution of the equations of motion, ery-".qy mad

turbulence presented in this section require specification of iLuet

ii

mm mmm mm mm m mm m " mm I
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and boundary conditions. Detailed discussions of these conditions

are presented in a separate section.

3.4.4 Incorporation of Algebraic Meynolds Stress and Scalar

Flux Closure

In this section functional relationships are derived for

the coefficients CU and Prt that are presented in Eqn. (3.4.6).

This procedure involves obtaining transport equations for the

Raynolds stresses and scalar fluxes. These equations are then

closed by the so called algebraic stress closure procedure. The

algebraically closed equations are not directly emicyed in this

study, but the interesting relatiomihip between the shear stress

and local rate of strain, as obtained from the .model, is cuna ed

with the k-E viscosity model of the preceding section to obtain new

relationships for C and Prt. As a result of this application of

the "agebraic Relmolds stress and scalar flux closure scheme, the

new expressions for Cu and Prt in Dqn. (3.4.3), and hence the k-c

viscosity model, is now sensitized to account for the effects of

stre•aline cuwratures and pressure-strain (scalar) interactions

with the inclusLon of 'Wall-donping' contributions. The inclusion

of thbese twi effects are crucial for obtaining accurate solutions.

5he importance of streamline curvature effects in

turbulent flow has been demonstrated in experimental studies

[l10,1ll]. ¶1hese studies indicate that curvature of the mean flow
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gives rise to an appreciable change in the turbulent flow

structure, -which then results in a direct influence on turbulent

transport of heat and rnaentu= [791. Attempts to include the

effects of streamline curvature in numerical calculations have in

the past been based on Brashaw's [681 zodification of the mixing

length theory. Edwever, because of difficulties in specifying

leNgth scal-s and an enpirical constant in Bradshaw's equation,

Lesch-iner and Fbdi 1641, Ljuboja and Rodi (631 and Humphrey and

Pourlhrdi [E5] fowid inclusion of streamline curvature effects in

the k-c. mciel through CP to be more practical. In the present

study a more geyeraliezae pru-edvv. of Le•.¢hziner and Fodi (64i is

adopted for describing Cp , in s,-trernLine co-ordinates, for the

recirculating region. The erpression for C is generaLized to

include 'wall-d singq effa':ts in the pressure-strain term and also

the local equilibrium of turbulence energy is not assumed (i.e.,

P/i = 1. wbere P is the productiKc of turbulent kinetic energy).

In the redeveloped region, a generalized expression for % is also

du'elcped in cartesian coordinates, similar to the less rectricted

.tc=dure of L3uoja and Adi 631. In both regions, the turbulent

Prandti number, Prt, is similarly functionalized. 7his generalized

procedure of improving the approximations of both. C and Prt in the

entive flow field (recirculatin•. and redeveloping) is uniquc. to the

present researuh.

4
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The general outline of the derivation is presented below,

tedious algebraic details ate presented in Appendix (A).

Proceeding from the Navier-Stokes and energy egiations, the

equations that represent the transport of Reynolds stresses, ujiu

and scalar fluxes ui' ' , respectively, are:

D ' ' ' Bu i -- -- aui- -

S ( U U j ) - -

I

au 3.' au ':.ak2'v I-R: (.. ax1 (3.4.13)

a I UTUI I II 61,;

-. i (uiuju) - " UkUj + p + k i k

IV

D 2' ' •T BUi
D (ue ) = ()

K KI

V

+ (r+v) - -i +~ a (3.4.14)
3xk axk P x

II ili

s ' ' ' •rL u'O a.' '. -II

IVI

I
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Terms I, II, III, and IV are often rexferr.d to as the generatiorn

(production), dissipation, pressure-strain (scalar) and diffusion

terms, respectively.

For coaplete closure of Eqns. (3.4.13) and (3.4.14), tarnz I,

!Ii and IV need to be approximated. Launder [69] and Sanaravp-cra

[781 discuss in detail the mathematical procedures involved in

closing these unknown gradient tenTs. This procedure is often

referred to as the Reynolds stresses (scalar fluxes) closure

scheme. Eqns. (3.4.13) and (3.4.14) with tU:-e closure

approximations included are then solved with the trarmport

equations for mass, mcmenturnt energy, k and s to obtain the

turbulent flow fiald. A somewhat more restrictive clasure schme

has been developed r Ejns. (3.4,113•) a--d V.3, ) A N

and for sinplifying thie un)aown gradient temns in Dams. (3.4.13)

and (3.4.14) L511. In this procedure the cvnvective minus the

diffusive transport tezx= are approximated by aleýb=ic equ.tions

and terms II and III are appcximated using the same Jvýcedzre as

that discussed by Launder 169] and Samarweera [78]. It is this

procedure, often referred to as the algebraic stress (.rcaLur flux)

clorste scheme, that is incorporated in the pYT-cnt st4y so as. to

derive functional relationships for Cu al Prt. 'Mpt to

S• • = .. .... -V • • .... .. ...
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eliminate the convective and diffusive terms was proposed by Rodi

[511 and later Irwin and Smith [83] and Gibson [79] adopted the

procedure to solve a variety of turbulent flow fields. The basic

relations are derived as follows:

Rewriting 3,n (3.4.13) as,

D ,-w(Uujj) - +% I %.j -ij + D(uluj) (3.4.15)D-t

where,

Pij 2 In I (production)

Oij E Term III (pressure-Strain)

Sij =- Tem II (dissipation)

D (uVu) Tern IV 4diffusion)

Rodi [51] proposed that the convective and diffusive transport of

Reynolds stresses are connected through the kinetic energy rates.

Replacing the kinetic energy rates, by using a balance between

production and dissipatioh rates rt-sult in the following balance

equation,

D rr "'r jU
-6t- (ujuj) - D(uiuj) - (P-0) (3.4.16)

where as defined previously P is the production of turbulent

kinetic energy,

P ½ Pij

Substituting Eqn. (3.4.16) into (3.4.15) results in,

(P-) pij + (3.4.17)"k_ ¢i - ii
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Closure of ¢ij and cij results in a set of algebraic equations for

the stresses uiu . Closure of the pressure-strain term is as

follows [69•]:

Iij ij (1) + 0 ij(2) + ij(lw) + Oij(2v) (3.4.18)

where the w subscript terms are the 'wall-daaping' corrections to

the pressure due to turbulence and turbulence and mean rate of

strain interactions. Each of the terms in Eqn. (3.4.18) are then

appoimated as [17,69],

S€ ~--r-r
- (uu - 6Jk)

Ul (1) " ¢ PS " k61 ) -

ij(2) -C9 2  3 (3.4.19)

ljj(lw) " -Cs (uwu( -5 k6ij) flt/x2 )

'riJ (2w) -,-2w ij .lj) ',,-2.2

In the above,

and Csj, Cs2, C.!w and C52w are airical cmistmits, their %alues

are presented in Table (3.1). The near-wall function, f(U/12),

j
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takes on a value of unity near a wall and zero remote from a wall.

Specification of f( 9/x2) is as follows: For flows in the presence

of a single %nil [17],

3/2
f(L/x 2) k o/y to M k /e

312
1 k

f(Z/x 2 ) - - k (3.4.20)
w

where, Cw is obtained by imposing the following condition,

f(Z/x 2 )-. 1, as y - 0 (Linear Sublayer)

For the 'log-law' Region (Inertial Sublayer),

T cj1/2 .pk (3.4.21)

and, 112

-t a Uy (P Tw) (3.4.22)

And fran the k-c viscosity model,

lt ClU p k2 /c (3.4.23)

Subsituting Dfn. (3.4.21) into Ekn. (3.4.22), xccaaring with Eqn.

(3.4.23) and imposing the limiting condition in the viscous

sublayer, results in,

3/4!P_=-- ; K=-0. 4
C C

V

using the local equilibruim assuiption, Cl , 0.09 [581, the above

becomes,

. II



59

1/C - 0.41

In the present recirculating flow gcmuetries the near-will function

should be modeled so as to reflect the bnportance of both side and

bottom walls in the corner region of Fig. (4). 7herefore, in the

present study, a superposition relationship is assumed,

3/2 1/mn \1r~
f (R'/x 1 [(I- +(, ) ,=2 (3.4.24)

Rwriting Eqn. (3.4.24) to correspond with the co-ordinate vyst=

of the present study, Fig. (4), results in

f(I/x) CD2-y) I k 2 (3.4.25)

where, 1 0, for (D-y) < d

x 2 2

!he only term renminirg to be closed is Eqn. (3.4.17) is the

dissipation term. According to Laurder, 1Fece and Rodi [17], this

term is,

C ~ (3.4.26)

SSubsituting Mqns. (3.4.19) and (3.4.26) into Eqn. (3.4.17) results

in"

ki 3k - 3 ~ l
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+ Pij -Dij + 6ij (3.4.27)

where,

A' Z (1-C 21/[ - - i + C 1 - c f1w f(ix ])I

and

SCs2w f(Q,/x ) A /(I-Cs2)

Eqn. (3.4.27) gives the interesting relationship between the shear

stress and the local rate of strain; as such, it is like the

'effective viscosity' relationship. In the analysis to follow,

this concept is algebraically explored so ,as to derive the

functional expression for C. , which, as pointed out earlier, is

the principal objective of this section.

A similar analysis to the preceding can be performed for the

scalar flux transport equation. Rewriting Eqn. (3.4.14),

D ,I'- 'r I • -

T (ue) -P1 + ý18 + D(ui8 ) (3.4.28)

where, PieS Tetm I (production)

€i8 -i8(i) + O0(2) + ¢8e(1w) + #±8(2w)

STerm III (pressure - scalar)

D(u 1 ) E Term IV (diffusion)

LL|
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Again, using the closure procedures discussed by Launder [69],

-- r-r
€i0(1) " -eel Y ui

±() C02 lke a• (3.4.29)

-C01  k uW 0 f(k/x 2 )

±0O(2w) 0

Values of the empirical constants, Cel, C82 , and Cejw are given in

Table (3.1).

Analagous to Itdi's 151] p o for t-he J•=lyo st-eSZ, t•i

convective and diffusive balance of scalar fluxes can be written

as'

--jU±6) -D (u )s- u8 I"
+ _(3.4.30)

12 ,1-
where Pp (Production rate of 8 )=-2 [k8 3T/akJ

ce(dissipation rate of 0 2 r (ae'lak) 2

Substituting Bn. (3.4.30) into EDn. (3.4.28) and making use of

Bn. (3.4.29) results in,
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- k % BT + k (3.4e •u1

where

T cel +c . f('/x2 ) +2 (C

+ •:- (P /c&-C )
and TC2

0;: - OT('-Ce2)

The expression for OT, Eqn. (3.4.31) can be simplified by assuming

local suilibruim of _t.bulence, in *which the production a.d
.2

dissipmtion rates of e are azsuced equal, Lee,

I /1: -. 1

#I - Cal + Col. l(il/) +,I (Pl•-.I)

As a m e of the local equilibruim assumption, the term
I

cantainirq ce and e" in Eqn. (3.4.31) drops out. As such,

trwapot equatiors for Le arn 6 02 are not needed. Dan. (3.4.31)

wiii also be explored algebraically to yield a funtional

rmlatiorshp for the turbe•nt Prandtl number, Prt, whidh as stated

before La the c4jective of this section.

In the reciroulating region, adopting the procedure of

t•schziner and Irdi [64], Egn. (3.4.27) and (3.4.31) are expressed

in strea'ine coordinates (s,n). As pointed out previously Figure

(Bl) illustrates the coordinate system, where coordinate s is
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-long the streamline and n is normal to the streamline. Writing

these aquations for all the cambinations of stresses a-i sczlar

fluxes results in a set of alget.raic equaticns. By lengthy

algebraic elimination procedures, unique expressions for the shear

stress, (uu' ), and the scalar flux, (Un9 ), can be obtained.

Subscripts 's' and 'n' refer to velocities tangential and normal to

streamlines, respectively. The final expressions are presented

below, with the tedious algebraic elininatiot details presented in

A~ppendil., (B).-

S 2 ku UU-, -"2 (A' R -I) ( . - -ES, (3.4.32)

a n 3e Eý C 4

+ - -2 u ]!s (3.4.33)
-un T ?l [2 £ R s "S T1

kin tha above S4 and Sr1 are lengthy algebraic e-.pressias in ter.s

of turbulent conz-tants, &W-c, a- us/An. Ecpressiots for Rc and

aus/an were given prervixusly in Eqns. (3.4.12) and (3.4.11),

rempectively. The algebraic expressions for S4 and ST1 are,

Ik2  2 4" aU 5
s 81 s A- S + 4 A (

+A -- A S,) (3.4.34)

Ian+I R
in whic:h,

S. - auC + 4 U
SO Bas/Ba + -- Uk
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S 2 u \2 u u
C C

The expressions for C and Prt ar readily obtained by c iring
Urn

Eqns. (3.4.32) and 3.4.33) with the Boussinesq approximatiorns,

Eqns. (3.2.1) and (3.2-5) expressed in streamline co-ordinates.

The results are,

C --- AA --- !• I. "

P - CL S S (3.4.37)

where ST2 ir also a lengthy algebraic expression given by,

s 2 - L

=+ Sj- L .. r.. .. 1)11 '

Eqn. (3.4.36) reduces to the mome restrictive fornulation uf

Leschziner and Rxdi [64] if equilibrium of turbuencs energy is

assumed, P/c - 1, and if 'waJl-dawing' corrections in the

pressure-strain terms are ignored, i.e., A " - 0.

In tue preceding enalysis C (and Prt) are zdeled in

stxeamline coordinates to reflect the sharp bending of the

stralines that duminate in the recirculatirx region. In the

present study the expressions for C. and Prt, Spas. (3.4.36) =nd
I I I I
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(3.4.37), are used with the standard k-c model for predicting the

flow field in the recirculating region. In the redeveloping

region, where the bending of the streamlines are not so severe,

expressions for C (to accx t. for crvature effects) and Prt are

obtained in (x,y) coordinate system. The matheiatical procedures

involved in obtaining these expressions for the redeveloping region

are analcgous to the previous derivation. They however, result in

even more tedious algebraic detail and lengthy algebraic

expressions. Consequently, the mathematical details are presented

in Appendix (B). The final expressions are:

C A 1 F + + -Z kAIV k{ r•t.• )+ikB•h+. )

A (F+ kBi(.4.38)

Pr ~ I 3VL:~.A B)(U +) IL0;'t= CU C ÷ W CT rx c+ ¢ + T TO
k ' au --kT2

in which,

2 2
V-- F + SC 2 k(: + B)

W I3 I I•
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A,B,C,C £ ,E,F, a and $ are lengthy algebraic expressions involving

turbulent constants and mean gradients and are presented in

Appendix (B). The above expression for C , Din. (3.4.38), reduces

to the expression of Ljuboja and Fbdi [63] if the

convective/diffusive transport of u'v' and longitudinal gradients,

3v/y/3u/ýy, are ignored.

The expressions given above for C and Prt, valid for the

redeveloping region, are used with the low-Reynolds number version

of the k-E model. When using the expression for % ,the near-wall

functicine fl (Dqn. 3.4.6), in the low-Reynolds number model is

auitted. This is essentially because is already modeled to

reflect the near-wall effects. The physical procedures Lnvolved in

dividing the flow field beyond rearward steps and pipe expansions

into two distinct regions, for application of either the standard
'1 f . 2.lA 'e..n.nr.1~ Aocý 4 = i 19 4)9 nat tt ir.
LJL ~ ~ A.. od s ,. '.. --zi' - u-,•r •l, are desr d •- .ne t -.on
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3.5 Two.-Pass Procedure

Initial calculations made by simqply eploying the standard k- 6

model formulation and the corresporning wll-function boundary

conditions yielded unsatisfactory results for the heat transfer

coefficients in the redeveloping region (106]. The predicted heat

transfer coefficients in this region were significantly higher than

the data. Using the low-Reynolds-number fomnulation results in a

large and erroneous reduction in heat transfer coefficients in the

revirculating region, but better agreement is obtained with the

data in the redeveloped region. This behavior is understandable,

because the extra terms appearing in the low-Reynolds-ntmber model

were a result of tests made on sheLr layers [60]. Thus, using the

low-Reynolds number model in recirculating flows, upstream of

reattacbment will not be totally consistent.

I•nrovement of solutions for heat transfer in the entire flow

calculation, the reattachment point is estimated using the improved

st-nda-rd k-£ model. In general, as will be shown in a later

cbapter, this initial solution tends to deviate somewhat from the

experimental results, particularly in the redeveloped region, but

it does predict fairly accurately, with the apprLpriate

modification to C , the reattadcment point. Once the reat achment

point is determined, the calculation is repeated with the improved

-I,
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standard k- c model eaployed upstream of reattachment, and the

improved low-Reynolds number version of the model applied

downstream of reattachment. Figure (5) shows the solution domains

for each model during the second calculation. In ziplementing this

procedure during the second pass, the low-1eynolds nunber terms in

Dqns. (3.4.6) - (3.4.8) are simply cmittted upstream of

re attachment. The boundary conditions for this procedure are

discussed in the next chapter.

1?

4
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3.6 Treatmnt of initial. Cbnditions for (Cr~uted Flooz

The ust-xeam condition~s for each test case cafiputed b ii-ts

study are surm~xarized in Table. 3.2. Unfor~tu.nately, the Work~ cý I'Lr~g

and Goldstein 181 does not, includie comlete ue suxe~nts of

upstream (approach) profiles sinoa their focus was on hea~-_ý-ansfer

coefficients. They do, however, include waurewi~nts of: apM'aac

temiperature br~ndai-y-layer profiles.. Their expF~rimeit was;

perfo~ned utilizing a tripped approach boi.y-'Layer with a fEairly

short, but -not entirely insignif icant, the~mal entry length. Thie

arpixroxtmatioti~ Of the ilnlat- profille fo L1, k aLTY F are described

below. A simi.lar proce-dure as that used tc cootain the- vcUO';ity

p~ofiles was used to determine -the tenperature pLJ.lvs,' %&~ ch i.bten

cizqpared with the data revealed no incor,ýisterncies. Thus, serving

as a check an~ the ',rallUdty of the procedure for thre velrcity

profiles. The sThmulation proce~ure is presentek- be-low, w.thtalgebraic dutaiJls presented in Apperdix (C), The various j.',ng2s

that alpear in the e,-atianz txilo (e~q-, xj andl ex-e

schematically prn&,nted in Figure (UA), IFrci tLL-bulent. flat pla"t

boudry-lzyer theory1 11031 the mrentma boun4*y'-J.y,:; thicknms;._

at thle Stwep is, .

02

U ]L
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'rABE 3. 2

sav~ or AjQtrJAcH g~mITICS MYR TEST CASES

%tain (81 ) [3421 fit 11123 fit K4ii (it0]

fit

(W ý. tfit fi~t
Trmw~f'!r)

bK.S F. t. ,.1 0.2~3 Not W~wrs t Ir t :Ur1envttsI

Pi-.'U tr~ O-4S 1 391 Evavocped JNvoLrj.Z,4 I111ýl fit ri t - opr'd P~to-

?wp? fully Fr;jY Ed i aiufcr Lw~fer CI.L31 Fully De~vw-
patif Dint~, Evelop~d 00%mlq.'d (11131 fit fit 10ord PLO0-j file*



tL...aness at the step is [1031,

6T(xa S I j - (U 
-7/1

0.169 Re -0.1 (13.2 Pr-,10.1L)ýC.9

(0.6.2)

in which E x - - x2", xjf and x2l" art def ined below~. Eqrs.

(3.6.1) am~ (3.6.2) ruquaire that tht effective starting length xl

be known. The procedurt- to determine x. is as follows. (See Figure

(Cl) for the schanatics.) The mamentlr' boundary layer up to the

trip is assýced laminar, given the starting length, " spcfe by

the exFx :Thx. - [8], thus bo~urzaqy layer thickness at the stfe,. is

readily deteuninxod. Atsumixq. that izu-Aiately at the step the

bounda.~y hp,,tr is tubulent, &Yt equating the obtained laminar

value txo t;- ttcrbuent grcwth 1av^, :esk~1ts in, an, effective starting

length for a turoaflent bc,4ada lyr at tm. tix.Tu h

total. effective startibj, lerrv-a ,xl, is saia of if, are, the dittaace

between the tz frand tne 3te?, x,.. A similar procedure is applied

V- obtain the eujxivauertt tuxijU~er.t thermal starting length a~t the

trip, x,21 *tAn th..s Gistance is used in Egn3.06.2), the thermal

tnumlJay layer ti.1ckn~sa ccr4c3,xes fav6taiuly witb the expenswtntai

values 18..

Cnrx the IoLtatmL axY'C ttc-rai. txmndaxy la~ye~xth kt are

detAnbintd, the velocity and tS~rxratur:3 pný>ilta at the- Stt,- can

L:
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be dete=nined by using the Abbott and Kline 110J fit for a tripped

boundary layer.

.[ 1/5.6

T [ 6(xl) 1 (3.6.3)

Rewriting the above for the coordinate system used in this study,

Figure (4),

1/5.6

U0  L 6u(•-Y J \ °0 u"J /
(3.6.4)

u 1 ; jd/2-y_ *>1
U0 6 (xI)'

Assuning that tenperature develcps similarly as the velocity,

T *' r 1/5.6
la-. I_.__

-A All (d/2-y -

T -T I (3.6.5)Tw---•. d/2-y
T " -T ; T (x 2)

In the aboie Uo and T, are the free stream velocity and

teiperature, respectively, and Tw is the wall tumperature. Inlet
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profiles for k and e are obtained by a piecewise linear fit of the

flat plate boundary layer data of Klebanoff LU2] as presented in

Hinze [16]. In the free stream, k is assigned a value of U * 1

percent of the free stream velocity (i.e., km0.01OU2). In initial

calculations [1061 it was discovered that the level of turbulence

intensity in the mixing region of the fit led to unreasonable

reattachment lengths when ccmpared with the data. To eliminate

this difficulty it was necessary to increase the level of turbulent

kinetic energy in this region approximately three-fold. This

higher level of turbulent energy noi. campletely arbitrary, since

the presence of the trip in the experiments w.uld s•ere likely to

produce turbulence levels persisting downstream of the trip higher

than those of the corresponding Klebanoff data for the sane

Reynolds number. Subsequent calculations studied the influences of
the trip (Ow- ic si4tua4 a anr-ronxinaItevy 11 trip-heights upstream

of the step) on approach conditions at the step and on the net

effect on reattachment lengths. The results indicate that in order

to have reattachrent length similar to the experiment, the

turtaulent intensity at the step ziust be equivalent to the intensity

found at 11 step-heights dcwrmstream of a step, which is

significantly much more enhanced than the Klebanoff [112]

intensities. Results of these studies axe presented in a later

chapter.

I
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In the data of Klebanoff [1121 the turbulent kinetic energy

(and £ ) are normalized by relations containing the friction

velocity, u T . For a turbulent flat plate u. is,

2 = 0.0066 U2 Re -1/ 6  
(3.6.6)T 0 6 (X)(..)

The heat transfer results of Aung and Goldstein (8] are

normalized by the Nusselt number just upstream of the step (NuH).

7his quantity is not provided, and so Rust be calculated. This

quantity is readily obtained from turblent flat plate theory L103],

0.8 r 9/10i -1/9
N t-H = 0.0287 N Pr Li - W4/ .6

- (3.6.7)

0.169 Re;0.1 (13.2 Pr-10.16] + 0.9

Because thr. trip is at a distance of 11 trip-heights upstream of

the step, it is necessary to enhance the result of E•n. (3.6.7) by

a factor of about 1.4 [8]. The reason, as will be shown

graphincally Ln a later chapter, is that the heat transfer

coefficient beyond a step (in this case the trip is the step) never

approaches the exact flat plate value.

For the back-step experiments of Moss and Baker (9] and &ton

and Johnston [20J all approach profiles are reported, except for

"the turbulence dissipation, which is obtained from the relationship

below.

b~.

I
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3/2
k * 0.005 d/2 (3.6.8)

1 0
0

Results are not very sensitive to the choice of Z 0.

For the pipe expansions of Zemanick and Dougall [39J and

Sparrxw and O'Brien [41], fully develcped turbulent inlet profiles

are specified for the velocity and temperature. These are,

__1/7(369

u_ - (1 - y/ " (3.6,,9)Uo0 •

and TT ( 2/V( .0

Tw-T-

The profiles for k and e are obtained by a piecewise linear fit of

the data of Laufer [1131. Qorresponding to Egn. (3.6.6) for the

flat plate, the friction velocity for fully developed turbulent

pipe flow is,,

0-04 1U2 Re_- (3.6.11)
0 U

The heat transfer coefficients for the Zemanick and Do1.all

experiment [39] require calculations of the bulk temperature. It

can be easily verified that the inlet bulk temperature is,

. fuTdA -T - 0.833 (Tw-T•) (3.6.12)

fb Iud VI
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Presented in this study are correlations of back-step heat

transfer coefficients for various Reynolds number. To rule out the

effect of approach boundary layer thicknesses on heat transfer,

constant mmentum boundary layer thickness is assired for a.11

eynolds numbers. (In the present study the effect of approach

boundary layer thickness on reattachment length is shown to be

negligible.) Also, the the~rmal and mcimentum, boundary layers are

assumed tc, have the same starting length. The mncmntum boundary

layer thickness at the step is assured to be,

Su = C H, where C is a constant chosen as described below

(3.6.13)

From turbulent flat plate theory [103], the corresponding starting

length is, .25

[ 0.2"IXX• [2.6219 6,u(PUo/v)0" (3.6.14)

Using Eqn. (3.6.2), with • 0, 6 T(Xl) at the step can be obtained.

In Eqn. (3.6.13) the values of C examined are 0.4 < C_< 2.0. Ebr

the correlations C is taken to be 1.5. Discussion on the effects

of the range of C on heat transfer coefficients is presented in a

later chapter.
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3.7 Final Remarks

In this chapter closure schemes for the turbulent viscosity

and thermal diffusivity terms in Dqns. (3.3.2) - (3.3.4) have been

presented together with scme theoretical items relevant to the

computational process. In the present study of turbulent

recirculating heat transfer, approximations of the viscosity by a

single mixing length scale proved to be inadequate. Variations and

imprcvenents of the k-.E model were then tested. The final

calculations, the results of %hich are to be presented in a later

chapter, emplcy the two-pass procedure with the improved version of

the standard k-e model discussed and the low-Reynolds number form

Direct application of the relatively complicated

"second-order", Reynolds stresses and scalar fluxes closure schemes

have not been attempted in this study. It was not necessary

because the two-pass method, as seen in a later chapter, adequately

predicts heat transfer coefficients for engineering purposes.

Also, using the Reynolds stresses and scalar fluxes proceaurN2 would

require initial oonditions for each of the stresses and scalar

fluxes. There is a lack of measurements of these correlations for

approach boundary layerts Thus, the accuracy of the mdel cannot

be thoroughly tested in the absence of well. defir&ed initial

xgiiLior.s. Moreover, er-ineerixV applications favor sinple
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nmdeling procedures and the present two-pass k-E calculation is a

simpler approach than carplete Reynolds stress closure modeling°

In the next chapter the numerical procedures used to solve the

set of differential equations, aqns. (3.3.1) - (3.3.4) and Eqns.

(3.4.7) -- (3.4.8), are presented.



CHAPTER IV

(WU=NTATIC AL PDCEDUTRES

4.1 General Remarks

The caoputational procedure outlined herein is an outgrowth of

the TEACH-T program described by Gosaan [101]. The program in its

original form features a variable, staggered grid atrangernnt and

solves the hydrodynamic equations described in 02hapter III by

finite differencing procedures based on flux balances. In the

present study, a tenperature-field solution routine together with

improvements upon differencing of the convective terms were

incorporated into the code. The flow considered is two-dimensional

--A the eiatjios• arp written in cieneralized cylindrical

co-ordinates (x,r) and can be readily converted into Cartesian

co-ordinates (x,y) by changing an index in the program.

ii
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4.2 Num-ýical Method

In this present work, attention is focused on solving the full

Navier-Stokes and energy eqcar-ions for steady two-dimensional

flaws. The numerical procedure used was developed by Gosman and

coworkers [101 and is an outgrow.h of the SIMPLE procedure of

Patankar [951 developed for bounrdary layer flcws. Details of the

finite differencing procedures are discassed very thoroughly by

Patankar [95,96]; therefore, only a brief overview of the solution

procedure is presented herein.

4.2.1 TEACH-T Solution Algorithmn N.ith Heat Transfer

The equations in Chapter III, Bqns. (3.3.2) - (3.3.4) and

Egns. (3.4.7) - (3.4.8), can be written generally as,

.L...PrucP+ .iPrv4) ) (rFr

-S =0 (4.2.1)

where

9 U, V, T, K or e

and F -1 eff or reff

In Cartesian coordinates, r = 1 and a/er = ;A/y. S is the source

term and represents the mechanism for the generation or destruction

of 4. However, S also represents all other tez3s that cannot be



conveniently expressed by the convection and diffusion terms of

BLn. (4.2.1), for example, the pressure gradient term (Cp/axi) in

the maoentum equations. The mass flow rate in Eqn. (4.2.1) must

satisfy the continuity equation. This condition is satisfied by

updating the pressure solution so that the resulting velocity field

satisfies the continuity equation. The solution for the pressure

field is discussed later.

The discretized equations are obtained by integrating

Eqn. (4.2.1) over a control volume. Figure (6) illustrates the

control volumes and grid points used in the TEACa-T program. The

control volumes are indicated by the broken lines, and the shaded

area represents one such control volume. The grid points are

placed at the geometric centers of the control volumes, the solid

lines represent the grid lines. This procedure, often referred to

as the staggered grid arrangement, aids in numerical stability

1101]. Figure (6), for simplicity, shows grid lines of constant

spacing; however, in this study non-uniform grid distributions are

used. One such distribution is shown in Figure (7). (It should be

pointed out that in Figure (7) the magnifications of the vertical

and horizontal scales are not of the saxre order.) 'his grid

distribution is devised to concentrate grid lines near the planes

of the walls. As will be discussed later various rnear-wall grid

densities were tested to obtain grid-independent heat transfer
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results. Figure (6) also indicates the treatment of the near-wall

control volumes; for instance, at a wall gri.d points are placed at

the centers oL the control volume faces. The advantage of this

procedure is that it allows the -treatment of different boundary

conditions. For instance, the value of ý at the boundary or the

flur acrss the control surface can be conveniently specified.

With the control volumes defined, Eqn. (4.2.2) can be

integrated for each control surface. This procedure is exemplified

by considering an isolated node point, P, as shovn in Figure (8).

EDqn. (4.2.1) then becomes,

Pro- rr P (ruO rl' dr

e[ prv _ (r ýrvO -rr 9 dcx
wr n 7r

- fs r dr dx - 0 (4.2.2)
V

By having 'J' repcesent the total convection and diffusion flux in

a given direction, and evaluating the integrals by the mean value

theorem, Eqn. (4.2.2) reduces to,

e - e s As Js A + A V 0 (4.2.3)
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Approximation of the fluxes, Ji, in the original TEA23-T code is

accomplished by the hybrid differencing schem [95]. In this study,

the hybrid differencing scheme is replaced by the quadratic

differencing schEme [98]. Both of these differencing schemes,

together with the justification for the change, will be discussed

in the next two sections. often the source term contains the

variable 4, and can be linearized,

S= Sc + Sp cp (4.2.4)

where, Sc is the part of S that has no ý dependency and Sp is the

coefficient of ýp. With these approximations Eqn. (4.2.3) can be

discretized [95].

The tinal discretized equations are only quasi-linear;

for instance, the coefficients may depend on values of 4 and also

on other dependent variables. As a result, the final solution is

obtained iteratively. Convergence can be attained by a series of

iterations. However, in most cases, convergence is not sinply

obtained as a result of successive iterations; for instance, the

values of 4 may oscillate or diverge. Controlling the changes in

is accomplished by the under-relaxation technique [95]. For

example,

Op Op* + a [changes in Op in the current iterationi

where Op is the value of Op from the previous iteration. To reduce

the change in Op, a ranges from 0 to 1. Convergence is achieved
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when (tp-q)p.

What finally remains, is a solution procedure for the

resulting set of quasi-linear algebraic equaticns. A

one-dimensional linear discretized set of equations can be solved

efficiently by the tridiagonal matrix algorithm r95]. For

two-dimensional problems, a line-by-line solution technique 1951

incorporating the tridiagonal algorithm is utilized in the TEACH-T

code. In this procedure, the equations for all the 0 values along

one grid line are considered, and the neighboring line values of ý

are su1situted from the best known estimate. One iteration of the

line-by-line technique is completed when all the lines in a chosen

direction are swept.

The pressure is updated by using the equation of

continuity in conjunction with a 'Poisson-like' equation [95). For

instance, the velocity is expressed in terms of pressure (for

simplicity looking at only the u-direction of Figure (8)),

+ @w " PP) Vr4.2.5

in which ý is pressure correction and the term N /Cp[ w-PP is

obtained fron the solution of the u-rznentuz equation. The

integrated fotm of the continuity equation is,

(puA)e - (puA)w + (PvA)n - (pvA) = 0 (4.2.6)
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Substituting for the velocities in Eqn. (4.2.6) by using

relationships like that of Eqn. (4.2.5) for ue, Uw, un and us

result in a discretized equation for the pressure correction. The

pressure obtained from solution of this equation is then used to

correct the velocities to obtain velocity corrections, ?i and %.

The numerical solution procedure for the TEACi-T code is

as follows:

1. Initialize fields for all variables.

2. Asseirble coefficients of momentum and eneryy

equations and solve for new variables (u*,v', etc.)

by using previous pressure.

3. Solvd for p in pressure correction equation.

4. Update all fluid flow variables, i.e.,

p=p* +, = =u + ii, etc.

5. Assesmble coefficients and solve for all other

values, i.e., k, and e.

6. Test for convegnt-,nce.

7. If convergence not attained, continue solution

procedure froat step (2) until convergence is

achieved.

In this study convergence of the solution is considered

satisfactory when the nozmalized residuals, R, of each ý equation,

summed over the entire calculation domain, are smaller than 0.005.
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For example, for 4=u,

fu - momentum equation
R (4.2.7)

P inletdA

In other wrds, convergence is achieved if Eqn. (4.2.2) is

satisfied. In the TEACH-T code there are three basic termination

procedures; first, if after 20 iterations and the maximum residual

source is excessively large, then it will be impossible to have

converged solutions, second, if convergence is obtained and third,

if the number of iterations has reached the maximuzm value

specified. In this study, the maximum number of iterations has

been set at 400.

As mentioned previously, the TEACH-T camputer code in its

original form did not include temperature calculations. However,

solution of the energy equation, Bqn. (3.3.4) is easily

inc•rporated- in _he cnDde by mimicking the numerical procedures of

say the u - nnenttm equation. To validate the code initial

calculations were performed for laminar heat transfer over a flat

plate and more recently, in as yet unreported work by the

Department of Mechanical Engineering, Howard University, for

laminar heat transfer flows over a cavity.

ii
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4.2.2 TWAC.H-T Hybrid Differencing Scheme

The hybrid differencing procedure used in the solution

algorithm is discussed in detail by Patankar [95]. This procedure

uses both the central and upwin, differencing schemes.

Approximations for the convective terms in the transport equations

are as follows: for face-Peclet number, Pe, (p u.6 x. /1-, convective

to diffusive transport) less than 2, central dif ferencing

approximations are used ard for face-Peclet nunber greater than 2,

upwind differencing approximations are used. The diffusion terms

are calculated by central differencing approximations.

From Figure (8), central ditferencing of Oe is the

avetLcie of ft and qp, and upind differencing uses,

Oe = op , for u >0

oe W OE , for u<0

By using the above approximations differenced equations can be

obtained, as presented below. Central difterencing of the

diffusion term is,

- i(4.2.8)
ax 2! i(Ax)

2

II
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And the convection term is,

u ,, u -- +I ; Pe < 2 (4.2.9)ax 2 Ar 011
U u" = u- U>0, Pe > 2 (4.2.10)

;0 d +u 0, Pe > 2 (4.2.11)rxIi 1x

Leonard [98] shcwed that for convection dominated flows the

-- s---Pur C------ -Z

differencing. He further dmownstrated that the hybrid procedure

severly restricts the grid densities (spacings), consequently,

limiting the numerical accuracy, and also that the upwind

ditferencing scrheme is a main source of numerical diffusion. To

eliminate saoe of these discrepancies Leonard [98] prcposed the

quadratic differencing scheme.

4.2.3 New Quadratic Differencinq Scheme

The quadratic scheme of Leonard [98] seeks to cambine the

accuracy of the central difference scheme with the stability

property of the upwind scheme. Rather than using the linear

interpolation scheme of the central difference procedure, a
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parabolic polynoiatia1 interpolation scheme is employed. Th1e control

volume surface values are obtained by fitting a parabola to the

values of 4 at three consecutive nodal positions, two located on

either side of the face considered and the third located at the

next node in the upstream direction. As such, consideration of all

the faces for a point P, as in Fiqure (8), would require a 9-point

star scheme in which the sign of all the face velocities must be

taken into consideration. The quadratic approximations for say

face le' (Figure (8)) are as Eollows 1981:
11

I e( + i i -i - 2i) u >0 (4.2.12)e=2- •i + i + 1- - 1 i+ I e

1 I0 + )i +2) - I ( + - 2 Oi1 U+ <0 (4.2.13)Ce 2 (i + + -8 (i ÷ i+ 2 * e <

Similar expressions can be written for the other three faces. In

qns. (4.2.12) and (4.2.13), the first bracketed terns represent

the linear central differencing approximations, and the second

bracketed terms represent the correction of 4 by upstream weighted

oun.aturcz. Direct app.iJcation% of Bns. (4.2.12) und (4.2.13) into

the TEACH-T code (described previously) led to an increase in the

number of iterations needed for convergence by as much as 100

percent. 1his is probably due to the loss of diagonal dcminance as

a result of the extra terms in the quadratic differencing
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procedure. Increasing the rate of convergence is acconplished by

grouping the quadratic (curvature) terms like those in Fins.

(4.2.12) and (4.2.13) with the source term S of Eqn. (4.2.1) and

then splitting up the source term and grouping a part of it with

the coefficient of Pp. This procedure is outlined for • = B, pqn.

(3.4.8) for the standard k-c model, in which S. is,

C 2
S = -C G + C p + Quadraic corrections

ec Ct6 2  ~ udai

Splitting S.,

E + SCt

in which,

S'. Cr) 2 k + Quadratic corrections

and

cS =-Ci~G

The final discretized equation for the nth iteration for point P

(Figure (8)), fran Eqn. (4.2.3) is,

Cp + S• EP CE EE + CW •W

*CNN +(n CS s(n-i) "(n-i)+ C ()+ C+ S5

Sixilar expressions are obtained for the other *- values.

In the present study, initially quadratic differencing
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was only applied to the nmoentum and energy transport equations.
This was because the recent study of Leschziner and Podi [63] has

shown that solutions of k and c are insensitive to the

discretization scheme, particularly in the high shear regions

bordering recirculating zones. However, in order to obtain grid

independent solutions, grid refinements were necessary in the

near-wall region; for instance, about a 10 percent increase over

what was needed when all the transport equations incorporate the

hybrid difference scheme. Recently, by extensive numerical

experimentations, Han, Humphrey and Launder [100] showed that for

grid distributions less than (22 x 22) in cavity driven flows,

quadratic differencirg approximations, for the convective tcrms

should be used for all variables. As a result, subsequent

calculations in this study did incorporate quadratic differencing

in all of the transport equations. With this procedure grid

independent solutions were very easily obtained with about a (25 x

28) grid distribution.

As a final remark, some of the advantages gained by using

the quadratic differencing procedure have been demonstrated by

Leonard [98]. The list below represents a brief summaty of

Leonard's [981 study, where quadratic differencing of the

convective terms results in:
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(a.) Reduction of the presence of false diffusion.

(ii) More Stability at high Peclet numbers.
(iii) Less grid-dependent solutions than the upwind

scheme.

As a result of the above conclusions this improved sciemne is much
more realiable in testing the validity of turbulent models.
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4.3 Treatment of Boundary Conditions

In order to avoid an excessively fine grid at a wall,

functional relationships are specified to describe the rapidly

varying quantities in the wall region. Me procedure of obtaining

these functions are two fold: the values for some variables (e.g.,

u,v,T) at the nodes adjacent to the wall (near-wall nodes) are

directly obtained from 'wall-function' relations, and where

'wall--function' approximations are not strictly valid, approximate

solutions of the transport equations for the other variables (e.g.,

k and e ) are solved in the near-wall region. In this study, as

mentioned previously, two forms of the k-E model are enmployed in a

two-pass procedure. The standard model is applied to the entire

flow field in a first pass procedure to establish the recirculating

zone, and in a second pass the standard model is maintained up to

reattachnent and the low-Reynolds number version is applied

downstream of reattachment. The boundary conditions for each model

require slightly different treatments, consequently in the

following sub-sections each procedure is analyzed separately.

4.3.1 Single Pass Procedure

The standard k- c model, is discussed in Chapter III, is

valid for regions outside the buffer zone (Figure (C2)) where the

flow is fully turbulent. Beyond this region, 13 < y+(uTy/,V) < 250,

is the 'log-law region' (Figure (C2)), and in this region

I[
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functional relations are assigned to the velocities and tenperath;s

L58]. 'These relationships, often referred to as 'wall-functions',

are approximate solutions of the transport equations. The

functional relationships for the entire near-wall region (Figure

(C22)) for momentum and energy transfer are obtained )y integrating

the governing boundary layer transport equations in each region

with the appropriate assumptions applied. She procedure is briefly

described below and in Appendix (C) the mathematical procedure is

carried out for the u-manentum equation. In the linear sublayer,

y+ < 5, the flow is assumed laminar and the solution of the

Navier-Stckes and energy equation is obtained by assuming the

shear-stress (ari heat flux) is constant throughout this region.

This results in,
* +

u. = xi (4.3.1)
+ +

T + x. (4.3.2)1
in which u`4= ui/u.

x+ -- xjut /v

and

T + E (T -T)/TT

where

In the buffer region, 5 <y+ < 13, both laminar and turbulent shear

stresses (and scalar fluxes) are important, so approxinate solution
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of the wall layer transport equations results in an integral

equation. In the log-wall region, 13 <y+ < 250, the flow is assmied

fully turbulent, and the Boussinesq approximations of Chapter III

are applied. Solution of the transport equations result in,

+ 1 ÷

u + - xn + C, K - 0.4 2  (4.3.3)

+ 1 ÷
T = -- n x. + D (4.3.4)K I

In the TEACH-T code the boundary conditions are expressed through

wall ihlt-a stress and heat tiux. For the standard k- E uodel the

'wall-function' relations are sutnarized below, and they are those

proposed by Launder and Spalding 158). These relationships are

nrdifications of the boundary layer results (presented above) so as

to reflect the presence of recirculating flow.

(i) Mean velocity: the wall shear stress,

1

T Pw Up CV4 k, , E - 9.8 (4.3.5)In (Ey p)

where subscripts 'w' and 'P' refer to values at the wall and a

point P close to the wall. The point yp+ is established by the

value of yp,

Y - Y.. C kpc (4.3.6)

Yp4
3)I
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In this study yp+ =15 for most cases.

(ii) Mean Temperature: the heat flux,

1 1

(Tw - Tp) P Cp C 11" k P2T

SPrttu+ + P(Pr)/Prt ] (4.3.7)

The function P(Pr) has been modeled by Jayatilleke [114],
3

P(tr Pr 4 Pr9.24 - 1 +i 0.28 exp (-0.007 I

Specification of Prt, in the near-wall region, has been presented

in Section (3.4.1).

(iii) Turbulent kinetic energy,

kp is calculated frcm the differentkal equation (Eqn. (3.4.7))

with the asstmption that the diffusion of energy to the wall is

zero. With this assumption Eqn. (3.4.7) reduces to,

-T- - pl G - pc -, 0 (4.3.8)
CyL PC k uy I-

The dissipation rate of turbulent energy in Eqn. (4.3.8) is

approximated as,

3 1 1

I i a
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(iv) Dissipation rate of Turbulent energy,

3 3

C= C k 2 / (Ky) (4.3.9)

The above relations describe wall functions for the horizontal

wall, the obvious modifications are made for the vertical walls.

4.3.2 TWo-Pass Procedure

Figure (5) illustrates the solution dcmains for each

model during the second calculation. In iiplneenting the

low-Reynold number procedure from the reattachment point, the

calculation proceeds to the wall with grid lines placed inside the

n iear. sublayer• 91n.i- a-c~t . . uan t e--b tau--3ry for the

low-Reynolds number solution in the sublayer at the vertical plane

through the reattachment point. Boundary conditions along this

plane for momntun and energy in this region are u+-y+ and T+--y

(as discussed in the previous section). The boundary condition for

the turbulent variable k is obtained by integrating its near-wall

transport equation and c is obtained by empirical formula directly

from k, as outlined in the previous section.

The boundary conditions for the entire flow field during

the second pass are summarized in Table (4.1).



98

TABL4 E 4.1
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CHAPTER V

PREDICTICNS OF TURBUL= RECIRCLRAIMNG REAT TRANSFER

5.1 General Remarks

The turbulent models described in Chapter III, together with

the coputational procedures of Chapter IV, are examined by

application to the two-dimensional back-step and the pipe expansion

geometries where experimental data exist. In addition to the heat

transfer experiments of A-ng and Goldstein [8], Zemanick and

Dougall and Sparrow and O'Brien [41] (which did not include

detailed hydrodynamic measurements), flow field comparisons are

made with the pure hydrodynamic measurements of other investigators

All calculations are perfonned with air as the working fluid.

The values of the fluid properties of air, such as density (p),

dynamic viscosity (p), specific heat at constant property (Cp) and

molecular Prandtl number (Pr) are taken from Eckert and Drake

[1151. In the back-step experiments of Aung and Goldstein [8], the

walls are heated to Luiform temperatures. The difference between

free stream and wall temperature is 180 c. For the pipe expansion

of Zemanick and Dougall (39], the wall teaperature distribution is

given in Zemanick [116]. For the pipe expansion results of Sparrow

and O'Brien [41] obtained from napthalene sublimation measuremrents,

the wall temperature is taken as the sublimation temperature of

napthalene. For the back step calculation the Peynolds number is
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based on the mean inlet velocity and step height and for the pipe
expansion it is based on mean inlet velocity and downstream pipe

diameter.

Figure (4) shows the schematics of the two-dimensional

back-step and sudden pipe expansion geometries considered in this

study. The point y = 0, for the bad--step is at a location well

outside the approach boundary layer, and for the pipe expansion it

is located at the symmetry axis. Table (5.1) lists the actual

dimensions used in the various numerical and physical experiments.

In this table all distances are in centimeters, the distance x/H

(in texms of step or expansion height) represents the final station

at which measuremnts were taken and the expansion ratio d/D, for

the back-step, represent the actual dimensions of the upper grid

boundary used in the present numerical. study.

The results presented in this chapter are obtained by solving

the system of equations of Chapter III by the numerical procedures

of (2Capter IV. For a better appreciation of the tasks involved in

the present study, initial calculations are presented (mainly for

the back-step geometry) just fying the need for the various

improvements and nmdifications inplemented during the develcqpent

of this research. Following this overview, detailed flow,

tcmperature and turbuience intensity fields and heat transfer

calculations obtained with the two-pass procedure incorporating

I.&
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TABLE 5. 1

PHYSIML DIMW~SIc5 ONSIDEM IN TEST (ZSES

i- GA*js 2 J~W U~l .511 0.71 11 6.340f
2

iDOCK Step MSaft! Baker 7.6 2.m- 0.67 94

Fii:atpo -ilw .7 0.508 0.43 Le I
5-47T -- M 0.54 11f -4-,T

-Th104

Pif 9riraw and 2.4 2.54 0.5 Not Api~c 5Silo3
son O'Brien (411 able -4.5xl03
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improvemnts to the model and code (as discussed earlier) are

presented. Table (5.1) lists the geometries considered for which

comparisons between the present numerical calculations and

experimental measurements are made.

Before proceeding directly to the presentation of the

numerical results, a few general comments regarding the calculation

procedures are presented. For most of the calculations in the

standard k-c model y'p = 15. For a single (first) pass with

quadratic differencing, a typical non-uniform grid distribution

used is (25 x 28), convergence is obtained after about 250

iterations with central processor times on an IBM 3033 Processor

Co1piex av,ýraging about 4 minutes. In the second pass, in the

redeveloping region the number of horizontal grids are increased to

about 32. In early calculations, using hybrid differencing with

the standard k-c model, a typical non-uniform grid used was (28 x

32), and convergence was obtained after about 190 iterations. Grid

independence of results, in the present study was verified for all

test cases. Figure (9) illustrates the verification procedure for

the back-step experiments of Aung and Goldstein [8]. Nusselt

number at one location is plotted as a function of y-grid

densities. Mhe x/H location chosen is purely arbitrary, for most

cases a value just dcwnstream of the reattadcment point is chosen.

Zie first point on Figure (9) corresponds to 15 y-grids uniformly

I I I I I I I I I I I I I I I I I I I I I
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spaced across the channel. All the other points correspond to

non-uniform grid densities, with a higher concentration of grids in

the near-wall region. As the number of horizontal grid densities

are increased from 20 y-grids to about 35 y-grids, but keeping the

near-wall grid location the same so as to maintain the y+*

condition, the Ntisselt number increases slightly. Beyond 30

y-grids the changes is less than about 2 percent. In most of the

present calculations the number of y-grids used is about 30. A

similar verification procedure was also adopted for the x-grid

densities.

Typical grid distributions used in the present study for both

the back-step and pipe expansion geometries aL-e shown in Figures

(7) and (10), for a single and double pass, respectively. The grid

distribution shown in Figure (7) is arranged such that for the

entire calculation domain the near-wall nodes are outside the

viscous sublayer. Typical near-wall distances are shown in the

figure. This procedure is necessary (as discussed previously) when

using the standard k-e model in a single pass. Upon establishing

the reattadhment length by the previous single-pass procedure, a

typical grid distribution, as that shown in Figure (A0), is then

eMployed for the second pass. The figure also shows near-wall

nodes outside the viscous sublayer for the side wall and up to the

reattachent point, XR, for the bottan wall, again consistent with
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the computational dcxain for the standard k-c model. Beyond

reattachment, at the very next downstream node, grid points are

placed close to the wall, inside the viscous sublayer, and the

solution procedure utilizes the Low-Reynolds number version of the

k-c model. The initial and boundary conditions described in Table

(4.1) are applied at the following locations: initial conditions at

the plane x - 0, boundary conditions at the near wall nodes, free

stream (or sy•Tmetry) conditions at the plane y - 0, exit conditions

along the plane x = NI and upstream condition for the Low-Reynolds

number model along the plane x - xR.

A brief discussion concerning the dependency of reattachment

length with Reynolds number and step height is now presented for

the back-step geometry. For turbulent flows reattachment length is

independent of Reynolds rinber. However, for laminar ana

transitional flows there is a significant Reynolds number

dependency. Initially (laminar regime), reattachment length

increases sharply with an increase in Reynolds number, and reach ing

a maxLmum. (in the transitional regime) then gradually decreasing to

a fairly constant value. Figure (11) illustrates the effects of

Reynolds number (based on mcmentum thickness at the step), on

reattachment length for laminar, transitional and turbulent

regimes. The experimental data points are that of Eatcn and

Johnston 120J and the solid line joins the experimental points.
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Initial calculations were perforned using three different step

heights to examine the effects of step heights on reattachment

lengths. Figure (12) illustrates that xR/H remains constant with

H, These results were obtained by using the orig-ial standard k-e

nxdel (i.e. no modifications to (). However, the same constanC

behavior is expected when using the improved model, the only

difference lies in the iuagnitude of tht. reattachment length.
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5.2 Initial Results (Single Pass)

Initial calculations were performed for the two-dimensional

back-step and pipe expansions by incorporating both the mixing

length and standard k-C models. For the k-c model Cj was assumed a

constant value of 0.09 and Prt approximated by Eqn. (3.4.2).

Approac~h and boundary conditions used have been discussed

previously. Presented here is a summary of typical initial heat

transfer results for the back-step in which Nusselt number

(normalized by its value just upstream of the step) is plotted at

various downstream distance (normalized by step height) for a

Reynolds number (based on step height) of 1728.4. More extensive

standard k-e results obtained in the present research ln g

hydrodynamic and turbulence flow field predictions are presented in

Ref. L106]. In results to be presented here for the initial

calcalations ccmparison is made between numerical prediction and

experimental data of Aung and Goldstein [8J for their highest

Reynolds number case. Figure (13) shows results obtained fram t.e

initial calculations in which the mixing length model was employed.

It is apparent frat the figure that this simple model consisting of

a single turbulence scale does not account for the complex

turbulence phenomena, particularly in the recirculatirn region.

This is evident by the couparitively small values of heat transfer

obtained when using the mixing length model. Figure (14) shows



107

heat transfer results obtained for the same case by the standard

k-c model. With this model, the predictions consistently

overestimate the experimental data particularly in the redeveloping

region. Hbwever, the overall agreement is fairly satisfactory

considering the inherent 'sisplicity' of the k-t model. The

constraints on the choice of the near wall grid line in these

calculations, as discussed previously, are that it must lie outside

the linear sublayer and yet, be close enough to the wall,

particularly for heat transfer calculations, to provide accurate

resolution of the flow in the near-wall region. Er most of the

P
average value in the recirculation zone.

Since the Reynolds nunbers of the present flow calculations

for the step are caoparatively low, the physical distance of yp
p

fran the wall is large and therefore resolution of the details of

the near-wall flow is not possible. In an attempt to inprove the

results by increasing resolution near the walls the lcw-Beynolds

number form of the model was employed for the entire region

downstream of the step. A typical result obtained by utilizing

this model is shown in Figure (15). The heat tr-•nsfer results

underestimate the data for the recirculating regicn, but fairly

good agreement is obtained for the redeveloping region. This

behavior is understandable since the justiticaticais of the

I
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low-Reynolds nztber tents in this model was based on studies with

accelerated boundary layer type flows L601. Such a model was

needed for it yielded an additional improvement by permitting

resolution of the near-wall region downstream of reattachment.

This is extrenely important when a local extrenwn in the velocity

profile occurs near the wall as is the tendency in the present

cases. The results obtained by the standard k-c model and the

low-Reynolds number model indicate that the standard model gives

better overall prediction in the recirculation zone and that the

low-Reynolds number model is better for the redeveloping region.

The two-pess procedure exploits this phenomena. Hmoever. the-

feasibility of such a procedure would depend on the reliability of

predicting reattachment lengths. This is accomplished by

incorporating various improvements in the standard k-s model

especially. Results utilizing these improved models are discussed

in the next section.

To yield overall better predictions of heat transfer results

another variation of the model was tested. This is discussed in

Section (3.4.3) with the additional term to the c-equation given by

&qn. (3.4,9). This procedure is often referred to as the

'sensitivity' correction of Banjalic and Launder [62]. Results

obtained by this procedure are shown in Figure (16). Again, no

substantial improvement in heat transfer results are obtained.
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Predictions of flow field variables by the two-pass procedure

will be: presented in a later section. All of the above

calculations (except for the mixing length model) yield

reattachnent lengths of about 4.5 step-heights downstream of the

step, with the maxim=m (peak) value of Nusselt number occuring

about one step-height upstream of reattachment. (Reattachment

lengths obtained by the various procedures are summarized in the

next section). The value of 4.5 is consistent within the range of

values obtained experimentally by Aung and Goldstein L81 for a

tripped appruach boundary layer. HIowever, the nrWels in their

present form underestimate the reattachment length for all the

other test cases considered. This phenomenon is also discussed in

detail in the next section.

jI
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5.3 Improved Results (Single Pass)

As discussed in Chapter III the standard k-c model and the

low-Reynolds nntber form of the model were iprroved in the present

work by functionalizing C and Prt through Egns. (3.4.36) and

(3.4.37), respectively. These (and all subsequent) calculations

incorporated quadratic approximations for the convective terms, as

discussed previously. Figure (17) conpares the heat transfer

coefficients obtained by the quadratic and by hybrid differencing

schemes. The quadratic procedure yields slightly improved

predictions of heat tramsfer for tne recirculating region.

However, improvements in predictions of reattachment lengths are

more significant and further the scheme requires lower near-wall

grid densities for grid independent solutions, as indicated on the

figure.

Figure (18) compares heat transfer obtained by both the

present improved standard k-e and low-Reynolds number models. The

trend is the s a , pas,," ,sl . For i 4-. -- - 4, ." t

standard model and low-Reynolds number form of the model better

represent the flow in the recirculating and redeveloping regions,

respectively, thus, xe-enphasising the need for the two-pass

procedure. Figure (19) shows similar heat transfer results, but

for a different value of Feynolds number.

In an attempt to yield better overall heat transfer

kI

I I - 1 i . ... .. .... . I .. ... . . . .. . . ... . .. .. .... ... . ... .. .. . !



predictions for the entire region by the improved standard k-c

model, without resorting to the two-pass procedure for which

results are described later, the 'sensitivity' correction of

Leschziner and Rodi 1641 were tested. In this procedure to the

c-equation an additional term is introduced, as given by EBn.

(3.4.10). Results obtained by this procedure are shown in Figure

(20). Again, no substantial inprovenent in heat transfer results

for the redeveloping region are obtained.

Heat transfer results for the pipe expansion case (for a

Reynolds nimber of 66,260) by the improved standard k-E model is

presented in Figure (21). Also indicated on the figure are the

experimental data of Zemanick and Dougall [391. Again predicted

results are larger than experimental ones.

The two-pass procedure described in Chapter III requires

partiti6'iing of the flow field into two regions: recirculating and

redeveloping regions. Consequently, the applicability of the

procedure relies on the accuracy and consistency to which the

reattachment length can be predicted. It is for this reason that

various numerical experiments were undertaken with erq:hasis on

reliable predictions of reattachment lengths. Table (5.2)

sumnarized reattachment lengths obtained by the various turbulent

approximation procedures discussed previously. In the table, the

expression "partially improved C * refers to exclusion of
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wall-darp'ng corrections and imposing the equilibrum of turbulence

energy assumption in the derivation of the funrution for C., i.e.,

A" = 0 and P/e = 1 in Bgn. (3.4.36). Fully improved C% refers to

Eqn. (3.4.36). The results indicate that by emplcying the fully

improved expressicn for C in the standard k-c model (together with

quadratic differencing for the convective terms) yields

reattachment lengths that are consistent with experiments, except

for the Aung and Goldstein [8] case. However, the reason for the

over-prediction is explainable. In their experiments the boundary

layer trip was located at eleven trip-heights upstream of the step,

'-tich -st- in a highe lev--l of tuoblv1nce- -int-ensit-y -at the

step. In order to gain same appreciation for the magnitude of this

effect, a numerical experiment was conducted by using the imprroved

k-c model to perform a turbulent back-step flow field calculation

with the step height taken as the height of the trip. 'Lie results

then were examined to obtain quantitative estimates of the level of

k and £ at 11 trip heights downstream. 7hese values were then used

as upstream condition input for the regular back-step calculation

in lieu of the method described earlier.

Although the effect on heat transfer of the higher level of

turbulence is slight, as shown in Figure (22), the reattachment

length is reduced, and essentially comparable with the experiment.

The reattachment length obtained is indicated in the last column of
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Table (5.2). Since there remains sane questions of whether or not

the physics are really irproved by this method of obtaining

upstream conditions and also as to whether or not heat transfer

results using it are actually in closer agreement with experiment,

it was not adopted for the final calculations.
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5.4 Improved Results (Two-Pass)

'The two-pass method was the procedure which as previously

indicated gave the best overall pr-dicticn of heat tramsfer. In

applying it during the first pass, calculations are performed

according to the previous section to obtain the reattachment

length. Specifically, for the best results, the first pass

employed the improved standard k-C model, with C, and Prt given by

Eqns. (3.4.36) and (3.4.j7), respectively. For the second pass,

the above procedure is naintained up to reattachment, and beyond

reattachment the improved low-Reynolds number form of the model is

used with CU and Prt given by Dqns. (3.4.38) and (3A4ý39),

respectively.

5.4.1 results for Back-Step

Before presenting the heat transfer predictions from the

two pass method, the hydrodynamic and turbulence flow field

predictions are discussed. The purpose is to illustrate that

altho,,uh Ithe erizhasis of the present study is on heat transfer, the

present procedure reliably predicts the other turbulent flow field

variables as well. Typical computed velocity profiles for two

different experimental cases are shown in Figure (23) and (24). As

can be seen, the agreenent between the experimental data and

present predictions is good. Figures (25) and (26) represent

cross-stream pressure variation and surface pressure coefficient
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downstream of the step, respectively. In the recirculating region,

the pressure is not uniform, as is expected, but approaches a

uniform value in the redeveloping boundary layer. Figure (27) is a

caparison of caoputed terperature profiles for one Reynolds number

with the corresponding data of Aung and Goldstein [8] and is

typical of the agreenent of results at the other two Reynolds

number as well. Figure (28) and (29) compare mean velocity and

temperature profiles in the reattached boundary layer with their

universal 'log-wall' functions. The computed slopes deviate

slightly from that of the universal slopes. This is typical of a

reattached boundary layer [8,25]. Figures (30) and (31) depict the

ccomputed behavior of turbulent kinetic energy. Figure (30) shows

the profiles at selected streaimise locations; the experimental

data points represent u' only. The same qualitative trend is

observed in the figure between the prediction's and the experiment,

and further in the recirculating region k is about 40 percent

higher than u 2251, since in this region all three components of

the Reynolds stresses are important. Figure (31) is a plot of the

streamrise variation of the maximum (peak) value of k and the

experimental data points are the total k values. As can be seen

that the agreement between predictions and experimental data is

again very good.

A ccmparison of the streamwise variation of the ccmputed
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heat transfer coefficients with the experirental data of Aung and

Goldstein [S] is given in Figures (32) through (34). The overall

agreement is acceptable. Figure (32) sutnarizes the results

obtained by the improved procedure with a single pass only and the

twv-pasA procedure.

5.4.2 Results for Pipe Expansion

Heat transfer results for three pipe expansion cases are

plotted in Figures (35) through (37). The results of previous k-

calculations by (liieng and Launder 159] together with the

experi4mental data of Zemanick and Dougall 139] are also shom for

conparison. In the recirculating region the Muselt number

obtained by the present improved standard k--c model differs

significantly fram that obtained by Uiieng and Launder 1591. The

zeaesons for this differenc-e are that Chieng and Launder 1591 in

their calculations assuned cornstants for both Cj arxn Prt and more

irportantly, their calculations proceeded fron the buffer zone.

Starting the solution inside the buffer zoe is only possible by

spetifying k arnd c for tnis region. Early attervts were made in

the present study to incorporate the Chieng and Launder L59J

fu-ctions v9alid for the buffer zone 1106.1, However, for some

unresolved reason the predictions obtatned did not correspond with

th,ý results of Chieng and Launder [591. It is obvious that the

results fram the present two-pass procedure are a marked

II t
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improvement over the Qieng and Launder [59] calculations and also

are in reasonably good agreement with experimental results in the

entire flow field.

Figure (38) shows the maxiaum (peak) Nusselt number dependence

on Reynolds number. The predictions exhibit a slightly greater

sensitivity to Reynolds- number than do the measuremnts. This

slight difference is insignificant when considering the range of

•,eynolds number studied. The predicted maximum Nusselt number is

represented by the following expression.

0.75
(NU) cH , c 0.145
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5.5 Downstream Face Heat Transfer

Figure (39) shows the side-wall heat transfer coefficient for

the back-step for two eynolds numbers. The Nusselt number is

normalized by its average value and the horizontal axis is

notmalized to vary from U to i, the former corresponding to a point

adjacent to the opening and the latter to a point where the

side-wall meets the horizontal wall. The results obtained (though

not possibly evident from the figure) indicate that the Nusselt

numbers are very small capared to say the base wall (about 10

percent of base-wall value). The highest heat transfer occurs on

the -_tion of the side-wall adjacent to the main flow and the

lowst occurs in the corner region. No experimental data are

available for canparison.

Figure (40) through (42) show similar predicted results of

heat transfer coefficients for three Reynolds number for the

downstrea face of a pipe expansion. Camparison is made with the

experimental data of Sparrow -•A O'1iC n [41. Agreamit with the

experiment is better for the larger Reynolds numbers. This

observed phenomena can be explained by the fact that in the region

adjacent to the downstream facing wall the improved standard k-e

model is used; and, as rentioned previously, the near-wall

resolution of this model, particularly for low-ILeynolds numbers, is

severly restricted. Figure (43) shows the dependence of the

.i i. *
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a verage Nusselt number on Reynolds nuber, the growrth law is

essentially the same as that of the experimntal data. The

predicted growth law is represented by the foW.lcaing expression.

0.6.5
(Iu) side =.CPI ,c 0.057
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5.b Correlations of Back-Step Heat Transfer

Results related to correlations of heat transfer coefficients

are presented in Figures (44) through (48) for the back step

gecmetry. All calculations were performed by assuming, at the

step, an untripped turbulent boundary layer havin9 a heated

starting length. Also, the same momentum thickness for the

incident boundary layer is assigned to all Reynolds numbers. This

is not too damaging an assumption because the heat transfer

coefficients beyond the step are fairly independent of approach

boundary layer thicknesses. This is deonstrated in Figure (44)

for three different approach boundary layer thicknesses. Mhe

region that shows the greatest sensitivity of heat transfer

coefficients to different approach boundary layer thicknesses is

the region cordering the reattachment point.

Figure (45) is a logarithmic plot of Nusselt number, Nug,

he ....sd onx, d ,•-ta'aa of reattacihment versus Reynolds

nu~*xw-, Rek, for five Reynolds number cases. The flat plate

turbulent boundary layer theory for heat transfer is also shown for

cmparison. The computed results all tend to the 0.8 power growth

law of the flat plate relation sufficiently far downstream of the

step. Here this occurs between IU to 13 step heights downstream of

the step. These tesults demonstrate the fact that the flat plate

bounidary layer theory based on distance downstream of reattachment
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cannot be used to predict the heat transfer in the redeveloping

boundary layer region. Even at significant distances downstreamn

where the sane power law behavior is followed, it will always tend

to underestimate the heat transfer rate. In the present

predictions, the ccputed results exceed the flat plate theory by

factors ranging frri 1.3 to 1.8.

Figures (46) and (47) show the dependence of the maximum (peak)

and side-wall Nusselt nzmbers with Reynolds numbers, respectively.

This power law dependence, for convenient reference purposes, is

sumrarized in Table (5.3) and should be of use to the designer.

The power law behavior for the maximum Nusselt number is used in an

attempt to correlate the distribution of heat transfer coefficients

for design purposes. This result is presented in Figure (48).

Figure (48) presents results for Nu Po 0.68 versus x/H, where the

exponent 0.68 represents the power law dependence of the maximum

Psynld!v nybher. A]_so plotted on the figure are the experimental

data of Aung and Goldstein [8]. The data points fall within the

expected range, except for the peak values. This is probably due

to the slight influence of the difference in approach boundary

layer thicknesses on heat transfer coefficients. The graphs of

Figures (46) t*ro•jh (48) can be used with sace confidence to

predict back-step heat transfer coefficients with accuracy

sufficient for most design purposes, within the range of

4A

I
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TABLE 5A3

CDU)RELA'C! OF MAXIMUM (PEAK) AND AVEIIAGED (FOR MeI~STREAM FACE)
NUSSELT NUMBER WITHi REYNflIS IKIUBER FOR BACK STE

NU e

Quantity m c

(N)MX 0.68 0.1066

ý1u)Bide 0.55 008
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Reynolds nunber considered. As a final comment, the results shown

in Figures (46) through (48) are very restrictive in the sense that

they represent heat transfer coefficients for a constant

step-height (H) of 0.64 m.. and a constant. approach boundary layer

thickness of 1.5H. Future studies to be undertaken will examine

the effects of step-height on heat transfer coefficient beyond the

step.

i ,
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5.7 Discussion of Results

The present results indicate that using the usual twa-equation

models of turbulence (standard and low-Reyrnids number form with

a constant) yields unacceptable predictions of reattachment lengths

and heat transfer coefficients for the entire flow field downstream

of a sudden change in geometry. A great improvement in results are

obtained by using the improved versions of the two-equation models

in the two-pass procedure. Comparison of ccoputed results with

experimental results, and with calculations of previous

investigators indicate that at moderate Reynolds number the

two-pass method with the i=proved two equation rodels allows

accurate calculation' of heat transfer over the entire flow tield.



IAPTER VI

COC.LUING RFEAWS

b.1 Achievements of Present Analysis

The results presented in Qbapter V demonstrate that by

employing modified versions of the k-e model applied in a sequenoe

of two passes, predictions of heat transfer coefficients can be

obtained fairly accurately for recirculating and subsequent

redeveloping flows beyond abrupt expansions where the ieynolds

numbers range from low to moderate values. The procedures developed

herein impose minim al restrictions on near-wall grid densities,

are numerically efficient and employ fairly simple turbulence

modeling. They are therefore, particularly appropriate for

engineering applications.

Important turbulence phenomena, such as streamline curvature

effects, and pcessure-stra in (scalar) interactions including

'wail-damping' effects have been incorporated in the k-e model

tiough fU-Octioraliiri to parameters (C,, and Prt) that were

heretofore assumed as constants. Thus, some of the most important

turbulence interactions are included in this improved k-e model and

at the same time, side-stepping the cumbersaoe numerical

calculations necessary for the more complex higher order schemes.

This functionalization is accomplished by mploying the basic ideas

of the 'second-order' algebraic stress level of closure without

actually employing the full rethod in the calculation.

i
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The eventual modeling and numerical procedures adopted for the

present study yield consistently acceptable predictions of

reattachment lengths, correlations of heat transfer coefficients

and flow and turbulence intensity fields of the entire flow field.

Throughout the course of this study, emphasis has focused cn

evaluating the capabilities and feasibilities of both the numerical

and turbulent closure procedures. Consequently, the numerical code

used is structured in such a way that it can be readily used to

evaluate various modifications of turbulent viscosity models.

I!
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6.2 Limitations of Present Analysis

The major short.coming of the present analysis lies in the

inherent assumption that underlies all turtulent viscosity models,

i.e. use of the Boussinesq assumption. By this assumption the

shear stress is forced to instantaneously respond to changes in the

mean strain field. This concept is not strictly valid in

non-equilibruim flows, of which recirculating flow unfortunately is

an example. A shortcoming of the two-pass procedure used is that

it requires, a priori, fairly accurate prediction of reattachment

lerWtLhs. A r la- expa-ioni 9=,Ayi triei, as those examined in

this study, fairly accurate reattachment lengths were obtained.

However, for other engineering heat exchanger geometries it is not

certain if the same level of success can be achieved. There are

other minor limitations of the present research which became even

less significant when viewed in the context of applications of heat

exchange equipment; for example, neglection of the intermittent and

fine scales structure of turbulence. As a final remark, Chandrsuda

and Bradshaw 125] presented detailed measurements of Reynolds shear

stress and triple products for the entire flow field beyond the

back-step. Uieir results indicate that the triple products play an

important role in the 'spreading' of the shear-layer, particularly

around reattachment. However, the k-e viscosity m:del in its

present form is not 'sensitized' to reflect triple products.

=
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6.3 Suggestions for Future Studies

(a) Direct application of the procedures developed in this

study can be applied to study turbulent heat transfer

flows over a cavity, for which experimental measurements

are reported 146J. For such a geaoe-try the flow

recirculates inside the cavity and the original shear

layer is only slightly disturbed, consequently, the

single pass procedure might suffice.

(b) By making the apprcpriate changes in the transport

equations, buoyancy driven flows (such as that in a

vertical sudden expansion) can be studied. It is

expected that the present improvements to the code and to

the basic model are adequate for analyzing such flow

fields.

(c) Further inprovenents on modeling the dissipation equation

is necessary. The improved model should more precisely

account for near-wall effects and probably triple

products. If such a iaodel is devised, then it is

possible to predict results for the entire flow field by

a single pass.

(d) In present studies the length scales (k 3/ 2/e) for both

the velocity and teMperature are assumed proportional.

As discussed previously this will only be true if P/ -"I
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Pe/E,, which is rarely approached in a recirculating

region. The way forward would be to replace the

temperature length scale by q'2)3/2/t6 , and then obtain

differential equations of transport for both e'2 and c6.



APPENDIX A

CLOSURE LEVELS OF 'TURMIENCE

The matheaiatics of some of the most common closure techniques

for the stresses u.u! and u' e are presented in this appendix.

(1) Turbulent Viscosity Models

According to the Bomssinesq [54] idea, the tensorial

representation of the Reynolds stresses and scalar fluxes,

respectively, are,
-P~.u. U Pt I• ÷ Ulu (AI)

jj 1 T- 3jj (M

A ;T

t ax

wtewre lit and rt are the turbulent viscosity and diffusivity of

tnerature respectively. %he term 1/3 6.. u u in Eqn. (AlI)

sinply ensures that the nozma] stresses do not vanish in the

absence of mzn strain. and they are equal in magnitude. The

approximations for the turbulent viscosity, Vt, will now be

discussed.

(a) Alaebraic E~xesqsions

By Prandtl's mixing length hypothesis [531,

2' Du,
li (A3)

where Zo ia the mixing (characteristic) length, and is

appoximated as,

t[
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2 a KY (M4)

where K is Von Karman constant (=0.4). Such an approximation for

9,o is clearly only valid for regions remote from the wall,

excluding the sublayer and buffer layer close to the wall. An

inprovsnent of this length scale was suggested by Van DriesC [56]

for th.e near-wall region. The expression is

£0 -Ky - exp (-y+ Tw/A) (AS)

In the fully turbulent region Eqn. (AS) reduces to FEn. (A4), as is

expected.

(,I) fifferentiaI Fn*,-nre-sions

In this procedure the viscosity is again approximated by

scales (length or velocity) which are in turn approximated by

r-ansport differential equatiorLs.

(i) One Equation Model

This modeling procedure has been developed and tested by

Bradshaw et al [57]. 7he viscosity is approximated by

1

C k 2pk 2  , k -(uu (A6)"t 0 2 uiui'

where C is a constant, kh is the velocity scale anI £o (as

described above) is the length scale. The turtbulent kinetic

energy, k, is expressed by a transport differential equaticn. The

differential equation is obtained by a tensorial contraction of the

I
4
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the Reynolds stress equation. The Reynolds stress equation is

developed in the next section, thus, development of the

differential equation fcr k is deferred to the next section.

(ii) Tw qaion Model

This nodeling p'rocedure is hbaed on approxb•:ating the

turbulent viscosity ty two scales, length and 'eJlocity [601.

li a C ýIPV0a(A7)

where v W k 2
0£ a' 2

and CU nomally assini a constant value of 0.U9. The dissipation

of turbulent energy, F , is expressed by a traspot 6ifferenttai

equation. for the sate reason as mentioned for k, the c e•j•ation

dAferred- to the next section.

(2) Stress and Flux ransport Models

Transport equations for the Reynolds stress and scalar

flux is derived, and a brief discussion of the cloure techniques is

discussed. (ine unsteady form of the goveaing equations are

maintained, although in the present s-suad, tin' stedy tom. o: the

equations are c•nidered). The instantaneous value& of the

Navier-Ststes equation, B!n. (1.2.1) are replAced by the sun of the
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mean and fluctuating quantities, as described in Section (1.2), and

applying the time-averaged continuity equation to further simplify,

results in a differential equation for the fluctuating velocity,

U.'

au i aui ýU i ,, ,
3 u. ~u k YR 3U. ik

2'
Iap Dui (.
P x -i a X •X aX

Writing a similar equation for the u! fluctuation, and multiplying

the u" equation &y ul, and the u' equation by uj, and adding the

two resulting equations, yields,
t t ._-

aui. U. DUi , au

u J• - .u1 ,) 4 ~ (u.u1 -. u~u,.Su-L + U. -+U. u .- u + u

- -. . . , k-• J Im

au.VU. axuia+R, 1 j (A9a

Time-averaging •n. (A9) and grouping some of the expressions

results in the Reynolds stress transport equation for the

corre].ation% ujuj. Quitting the usual overbars fo." the mean fluid

L U., i I I I I
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dynamic variables results in Bqn. (3.4.13).

A similar analysis is performed for the scalar (energy)

equation. The procedure is as follows: substitute the Reynolds

procedure of Section (1.2) into the instantaneous energy equation,

Eqn. (1.2.4), and multiply the new equation by u', the result is

then added to the product of Eqn. (AB) and e'. Time-averaging the

resulting equation yields the transport equation for the scalar

flux, u' e'. Again by omitting the usual overbars for the mean

quantities, Eqn. (3.4.14) is obtained.

The transport differential equations for k anid e, as used in

the t.r-equation model, are now developed. Performing a

contraction on the Reynolds stress equation, EBqn. (3.4.13), i.e.,

setting i=j, and replacing uiu' ;2 by k results in the transport

equation for k,

Dk au. au. au.
u.. . U.o. - vDt i T .

nI (A10)

a u (u +k) +v 2

xi ax.

IV

Eqn. (AlO) is the ditferential equation that governs the transport

of turbulent kinetic energy, k, and Teams I,IIr and 1V have the
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same physical interpretations as thc-e of Egn. (3.4.13).

The derivation of the transport equation for e , the

dissipation rate of turbulent energy, is slightly more

algebraically involved. The mathematical procedure is briefly

outlined below. By definition, from Eqn. (3.4.13) the dissipation

(Term II), E , is,
, I

•u. 3iu.

F= V 71 (All)

', U*

Differentiate Epn. (A8; with respect to 3/xY. and nultiply

throughout by 2vauj/Dx , time-average the results and use the

definition of c , Eqn (All). By grouping various terms, the result

is the transport equation for E ,
S( ) 2

D• U i ui auk ui

3Y "u ac ixk i- 2 Vi. X X

l~i• u uuiauk u I 2u

-2 axt Ix, ÷ x €i Zxk C k 2"uk axt axk axt

-(A12)

!Terms 1,1I, Wn- III retain thei r respect ive 1ý.ýysica:ý meair•.js as

Sgiven in Eqn. (3.4.13). These differential pations for thbe

Stransport ot k and E; nust be clo.• \e s-o ds to he. aj lice)"Le. ilhe
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closure of E!n. (AIO) for the turbulent kinetic energy is

accomplished bhy comparing each of the ter=s with experimental

measurements, and deriving empirical relationships. For the z

equation, Eqn (A-L2), this is not possible for none of the terms are

accessible to measurements; however, closure is accomplished by

gross simplifications. Launder 1691 presented the closure details

for both equations.

Within the framework of the turbulent viscosity model, Eqns.

(All) and (AL2) reduces to [691,

2
V G- -- (AI4)

'P aE aeA Ciy C U t - C 2  PC- (A14)

wh'e O , , CI =A..- C a -re wviri-c1 coristants, their values

are listed in Table (3.1).

Often analogous transport equations are needed for 6 and

E (-2 r (ae/axxk)2). However, in this study, as will be. shown in

Appendix B, these tems are omitted.

1
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DERWVATICN OF C AND Prt FUNCXI(INS FOR EI'TIRE fl FIELD

Relationships for C and Prt are first developed in

streamline co-ordinates for the recirculating region. Figure (Bi)

shows a schematic of the streamline co-ordinate system. In the

present formulation the following assumptions of Leschziner and

rodi L643 are used.

v/r =0 (Ln)

Re--writing EBn. (3.4.27) for each ccnp-nent in (s,n) co-ordinate

system,

'u' P- (A' A) A D (B2)Us y, ,L5 - ( +t. --L

k ' " 2 'P
Un = Pna T(A + A - k (A - -1)

k A
- Dnn (B3)

U, P ::'(A + A )- k (A 1)

ii S eP 3'1

_ k A" D 9k A -

T D Ss (B4)

in which, P- 7- s

*1

i U
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Figure B1. Sketch of StreamLine Co-ordixate System
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In the framework of the Bou-sinesq approximation, the k- E model

is,

u I 
2( au, CBS)

Similarly, writing Pij and Dij, Eqns. (3.4.15) and (3.4.16) in

streanline co-ordinates and using the assunptions given in J:in.

(Bl),

P 2 3U +(U 2u,2 (B6)
C

P 4 uu I - (B7)
TM ns R

c

-ss Z u- /sau + (Bn)

D- + ,, 09,Ds -s dn v-n -s /R c

w v UU
D 2 uu - - (B1O)
nnl sun J T

ss s n Rc

C.
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Substitution of Eqns. (B6)-(BL1) into Eqns. (B2)-(B4) results in

the following,

2 A,@ S + . + - A +3 u

=usun l A~ "n R + n IC

+ Us~ 4•"( s) + A" s•- + 2-B12-)

2 P

S Sntc~o

-- k •-F-A-u + 3') - . -A (Bu

C nx E: )7

Etqns. (BI2)-(BI4) represent three algebraic equations with three

unnw •strse, %uu2, •2 an us. Elii~ tion oi• •2 in
Sn.(B±2) results in the expression for u'su'n as given by Eqn.•n.n

(3.4.i2).• Comparing E•n. (3.4.32) with the Bolssinesq

approximation, Eqn. (B5), reu2 l.ts in the functional form for C ,

as given by F Un. (3.4.36).

Following a s zuilar procedure as outlined above, the

II

2k I (B14)-
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functional representation for Prt is obtained. Writing E)n.

(3.4.31) in (s,n) co-ordinates, for both fluxes,

-Use C +Tvs •- + s )

+ aU +UT (B1)
e 4un Isn-'k u; -' 8us + u 9

- ~ ý Un T' UUn N" n §n"-"

, -, c ]'

'The Boussinesq approximation is,

-0 n 0 lit (B17)

Elimination of u 6' in Eqn. (B16) by Eqn. (B.L5) and ccparing the

result with Egn. (B17) give the functional form of Prt. To isolate

the main contributions of curvature effects on Prt, the following

assumption is made,

aT aT

With this assumption the expression for Prt is obtained as given by

Eqn. (3.4.37). Expressions are now developed for Rc and au,/Sn.

Using the definition of the radius of curvature,

El}
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1 d2y/dx2
•-= (B18)

C 11 + (dy/dx)213/2J

Using the functional relationship for ',

d V

and

V DV D + 1 av V2  @u

2 7 y - T- u X- U3r
dx2 =C u u - u

Substituting these expressions into E>n. (BI8) result, in the

expressions for Rc as given by Eqn. (3.4.12).

. us!/ an is determined in the following manner. Transforming

from (x,y) to (s,n) co-ordinates,

S(2) . S, (1) (B19)Sk2 1jCk Cj2.

where the C's are the direction cosines. Rewriting equation (B.L9)

in (n,s) system,

S , sin(2e)[ S• - S.] ÷ S cos(28) (B20)

Taking S to be the shear stresses,

4
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= 2 ýu- S 2Sxx z • ; = 2•

sy = •- ÷ -

ns = -

Substituting these relationships into Eqn. (B2U) and solving for

Duss/n, results in the expression as given by Eqn. (3.4.11).

Expressions for C and Prt are now obtained in (x,y)

co-ordinates valid for the redeveloping region. The procedure is

analagous to that as outlined above, and therefore discussion will

be very brief. Rewriting Eqn. (3.4.27) for each of the stress,

substituting for Pij and Di% and eliminating u' and v results

in a unique expression for u v . Cm~paring with the Boussinesq

approximation for u'v' results in the expression for C as given

in Eqn. (3.4.38). In this region, P, Pij and Dij take on the

relationships as given below.

P - t G,

in which G is defined by Eqn. (3.4.8).

2 u ,2 2v V
P)W = - 2v T- - u a• + j u V

xy
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,2 au ; u
P -2u 2

,2 au ' v
P = -2u u - 2uvPyy "d x

,2 ;u ,2 ;v
D -117-u V -

D- 2  u w 2 u V -7

D -2

Dy - 2 v'2 -v 2 2uv

In the above expression j0 ,1 correspond to the rearward facing

step and pire expansion gecmetries, respectively. Ln the

as,

C V 1 C s2 + CS2 wf

A .+ [A P f " C -

A - 'A " B A' C 1

j

A A +

E u C 1 2kA ;u A (a•+ ÷) + I-3

T F

k u Ik. 1+A (.

2 7y C7
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6= 1 2 -

8 1 2k A" a

A similar analysis for Prt is perfonned, the final resuit is given

by Dgn. (3.4.39).

i
S



?APP&WDIX C

SIMfLTIAON OF XNITIAL C0DMITIWNS AND TREA2MAW=T OF NEAR-WALL fLOWL3

D.1 Simulation of Initial Conditions

Figure (C3.) illustrates the schemiatic procedure for the

simulation of approach boundary layer thicknesses for the Aung and

Goldstein f8] experiment. The experiment was performed with an

unheated starting lergth, Ci. The actual dimensions are,

15 cm. ,X1  -Y' , - =X- x 2

x 1 - 45.5 cm.

x 2 - 30.5 cma

xS = 10 cm.

Frva laminar fiat plate boundary layer theory [1033

6 = 4.64 (Cl)

PU'

6' . ,,,_,i/f/4j' (C2)

"1.026 tw L / J

Equating the turbulent boundary layer thicknesses, Bans. (3.6.1)

and (3.6.2) with Eqns (Cl) and (C2) results in expressions f or the

respective starting lengths. The etective starting lengths are,
Pt

x2 XS + x2

Inserting these lengths into Eqns. (3.6.1) and (3M6.2 rsullts ix1

4
•,;,l. ,
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the mamentam and thermal boundary layer thicknesses at the step.

D.2 Wall Boundary Condition

Figure (C2) illustrates the mean velocity distribution in a

boundary layer [121, also indicated are the names associated with

each region. A brief mathematical description is presented for the

functional behavior of the mean velocity in each of the regions.

The analysis is formulated for the u-velocity; however, similar

procedures can be carried out for the v-velocity and tenjerature.

1. Linear Sublayer

The viscous sublayer is approximately equal to 0.1 parcent

of the total boundary layer thickness, this corresponds to y+ < 5.

.LC I.JLO. at 0LL1O.GLa,

T= + Tt (3

where,

(laminar) i D

Tt (turbulent) = - p u'v' (Boussinesq Approximation)

The mczentwn equation foc a two-dimensional, incompressible,

tur.ulent boundaty layer with zero pressure gradient is,

I
S. . . . . . .
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I LINEAR SUBLAYER
i/ BUFFER ZONE

I1I LOg-LAW REGION

30
25 J II

[5i III
I+

/0 Ekqf. (dlo)

2/ 521Q0 50 io-------0/02 5 x /O

Figure C2. man Velocity Distributic' in Turbulent B~Orry

Tayer
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u U a T (C4)

were,

u v -O, at y= 0

It can be shown that,

Thus, for a small distance away frcm the wall,

__ 0

This uppiies that the region clse to the wall is a constant shear

stress region. Re-writing Eqn. (C3),

SVu T- ' w -- -2 (CS)
p Vy 7  ~

In the viscous sublayer region, E1n. (C5) reduces to (since u'v' -

| m m m |
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Oaty 0),

(,du= u 2  
(C6)

Integrating Eqn. (C6), and using the definition of,

Y4= Yu and u+= u , result in,
v ~U~i•) uT

u+= y4  (C7)

2. Buffler Layer

br t-his re~ion f often referr. to .A01, the trsition -

region, y+ ranges fran about 5 to 13. In this range both T and

Tt are iXportant. From the mixing length hypothesis,

-puv = P(CS)

Using the Van Driest [561 length sc,%le (Bln. (3.4.4)) and

subsituting into Eqn. (CB), yields,

"Tdu* 2 [(-e"{>""1 ,7 dL•)
du + (KY) 7 -- u2 (C9)

Fbr a Cy÷) = kKy÷)2[1 2 exp C-yI/A+) 2

and, b1

Bqn. (C9) reduces to,
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a(y+) + -b du 1 0
\ dy/ 

\dy /

or,

+2 1/2
du+ -b + (b + 4a)

÷4  2ady

J r+ 2 dy +(CIO)
0+ b + 4a(y+) I/ +(co
0b b+[b 2 

* ]

Bqn. (ClO) agrees very well with the experimental data of Klebanoff

[1121 and Laufer [113J in the buffer zone [123.

3. jog-wall Region

For this region, sometimes referred to as the fully

turbulent part of the inner region, y+ > 13. Bq.n. (C3), reduces

Tt ' ' 2 (Cli)

p_ -uv UT

By substituting the Boussinesq approximation, Eqn. (3.2.1) and the

expression for the turbulent viscosity, pt, Eqn. (3.4.22), into

Eqn. (C 11), result in

uK U r= 2 (C12)

T TY
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Integrating Bqn. (C 12) results in,

+ l +
u £n y c (C13)

IK

)I

)I
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